学术报告 | Secure Self-supervised Learning

admin 2022年10月29日17:16:45评论15 views字数 1180阅读3分56秒阅读模式

浙江大学网络空间安全学院

学术报告



学术报告 | Secure Self-supervised Learning

Xinlei He

- PhD student

- CISPA Helmholtz Center for Information Security


Secure Self-supervised Learning

  摘 要  

Self-supervised learning (SSL) is an emerging machine learning (ML) paradigm, which relies on unlabeled datasets to pre-train powerful encoders that can then be treated as feature extractors for various downstream tasks. Despite being powerful, SSL is also vulnerable to various security and privacy attacks. In this talk, I will summarize some of our projects covering both attacks and defenses, with particular focus on membership/attribute inference attacks(CCS 2021), more effective model stealing attacks (Preprint), and copyright protection (CCS 2022). I will wrap up with a discussion of open directions on this topic.


  报告人简介  

Xinlei He is a second-year Ph.D. student at CISPA Helmholtz Center for Information Security advised by Prof. Yang Zhang. His research focuses on trustworthy machine learning, misinformation, hateful speech, and memes. He has published over 10 papers in top-tier conferences/journals. He served as the TPC of ESORICS 2021 (poster session) and ESORICS 2022. He is the recipient of The Norton Labs Graduate Fellowship 2022. More details are at http://www.xinlei.info/.


时 间

2022年10月24日(周一)10:00

会议平台

腾讯会议

链接:https://meeting.tencent.com/dm/xiQIs5jgpb1v

原文始发于微信公众号(浙大网安):学术报告 | Secure Self-supervised Learning

特别标注: 本站(CN-SEC.COM)所有文章仅供技术研究,若将其信息做其他用途,由用户承担全部法律及连带责任,本站不承担任何法律及连带责任,请遵守中华人民共和国安全法.
  • 我的微信
  • 微信扫一扫
  • weinxin
  • 我的微信公众号
  • 微信扫一扫
  • weinxin
admin
  • 本文由 发表于 2022年10月29日17:16:45
  • 转载请保留本文链接(CN-SEC中文网:感谢原作者辛苦付出):
                  学术报告 | Secure Self-supervised Learning http://cn-sec.com/archives/1365080.html

发表评论

匿名网友 填写信息

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: