国产射频前端芯片格局和无线通信频谱分配

admin 2023年9月24日23:34:08评论12 views字数 17029阅读56分45秒阅读模式

2023年,国产射频领域的各个细分赛道都将迎来上市公司,也都会有自己的标杆和龙头企业,可以说这将是国产射频前端芯片格局初定的一年。在这种格局下,国产射频前端领域的初创公司若想要在行业内站稳脚跟,寻求进一步发展,则需要努力对标相应赛道的标杆企业,发展至赛道前三水平。

国产射频前端芯片格局和无线通信频谱分配

射频(Radio Frenquency)一词由英文直译而来,起初最早应用于无线广播(FM/AM)中,而现在射频相关模块仍然搭载在一切需要无线及通讯的设备中,负责2G/3G/4G/5G、Wi-Fi、蓝牙、GPS、UWB、LoRa、NB-IoT等通信协议的接收、转换与呈现。没有射频模块,手机就不能再称之为手机。

射频芯片是射频模块的核心,指的是能接收或发射射频信号并对其进行处理的集成电路,处理指的是将基带信号进行上变频和滤波的射频信号发射出去,或把接收到的射频信号通过下变频和滤波得到基带信号。

射频芯片对工艺制程要求并不高,可不受摩尔定律影响[2],但不代表它很简单。与CPU、GPU或是电源管理芯片不同,射频芯片设计复杂,且一般以工作频段和增益为主要衡量标准,因此市场整体较为稳定,更新较慢,不像前者那般时常有新品发布。[3]

主流射频厂商主要采用自主生产的方式运营,即IDM(Integrated Design and Manufacture,垂直整合制造),Fabless(无制造半导体)模式的公司难以与IDM公司形成优势,此外,射频芯片门槛非常高,并不是说做就能做。

一方面,移动终端设备功能快速增加,5G、Wi-Fi 6技术成为主流,射频芯片数量急剧增加,然而留给射频芯片的空间却没有同步增加,高度集成化将进一步增大其设计难度,加之不同类型芯片结合方式、干扰和共存等问题,设计难度指数化提升。举个例子来说,4G 时代,仅头部手机厂商旗舰机会采用高度集成的PAMiD射频前端方案,而5G时代,L-PAMiD和L-PAMiF等已成为中高端手机标配,提供不了相关技术的射频芯片公司只会被淘汰。[4]

另一方面,从商用角度来看,设计一款射频芯片不仅需要大量理论知识,也非常考验设计者的经验,不依赖制程的集成电路大多依靠更换材料提升性能,GaAs(砷化镓)、SiGe(硅锗)、GaN(氮化镓),每一代材料,都拥有其工艺、器件和电路,加上很多射频芯片的指标要求都是在挑战工艺极限,这就要器件结构拥有诸多创新。[5]

射频芯片是一个非常泛的词,虽然很多情况下,大家口中的射频芯片多指代射频前端芯片,但实际上嵌入在手机中的射频芯片不止一种,每一种都具有广阔的市场前景。

普遍来说,手机无线通信模块分为射频前端、基带、收发器、天线四大部分,每个部分又是由大量分立的芯片组成,市场非常复杂。

国产射频前端芯片格局和无线通信频谱分配

智能手机通信系统结构示意图[6]

射频前端——国产的最爱

射频前端RFFE(RF Front End)是天线与射频收发芯片的必经之路,它负责无线电磁波信号的发送和接收,是移动终端设备实现蜂窝网络连接、Wi-Fi、蓝牙、GPS等无线通信功能所必需的核心模块。

射频前端芯片通常集成多种不同器件,不同终端中所集成的器件的种类和数量也不同。大多情况下,射频前端芯片包含功率放大器(PA)、滤波器(Filter)、双工器或多工器(Duplexer或Multiplexer)、低噪声放大器(LNA)、开关(Switch)、天线调谐模块(ASM)等器件,而在部分终端的射频前端架构中,还会在天线开关后增设双通器(Diplexer)、连接器 (Coupler)。[7]

不同器件并非各做各的任务,而是彼此协调联动:射频功率放大器(PA)用于放大发射通道的射频信号;射频低噪声放大器(LNA)用于放大接收通路的射频信号;双工器用于隔离发射信号和接收信号;滤波器用于保留特定频段的信号,滤除特定频段外的信号;射频开关用于实现射频信号收发转换,并将不同频段射频信号集中在同一通路。[6]

此外,不同器件也影响着整机的通信质量:如整个前端的链路插损影响着射频信号功率和灵敏度,PA放大性能会影响发射信号的功率,LNA放大性能会影响接收信号的灵敏度,滤波器会影响射频信号的带外杂散指标等。[8]

国产射频前端芯片格局和无线通信频谱分配

终端部分射频前端器件介绍[7]

从2G到5G,射频前端设计已大有不同:

  • 一方面,移动终端设备内芯片数量急剧增加,整体价值不断攀升,比如说,高端4G手机中射频前端的价值达到2G制式手机的17倍,而在5G时代射频前端价值则达到4G制式下的两倍以上;[9]

  • 另一方面,移动终端设备留给射频前端芯片的空间并没有增加,以往,射频前端模块电路设计着重于功率放大器(PA)设计,追求低电压操作、高功率输出、高功率,以符合使用低电压电池,藉以缩小体积,同时达到省电的目的[10],但在功能愈加丰富的现今,厂商只能不能提升射频前端的集成度,来满足现有设计需求,这必然会增加中高端市场准入门槛。

国产射频前端芯片格局和无线通信频谱分配

2G~5G射频前端构成数量变化及价值量[11]

在过去多年的发展中,射频前端不同器件工艺和材料经历多次迭代,目前2GHz以下频段,射频前端模块以金属氧化物半导体(CMOS)、双极结型 (BJT) 、硅锗 (SiGe)或Bipolar CMOS等硅集成电路制程设计为主,而5GHz以上频段,砷化镓场效应晶体管在电性功能表现优强势。纵观整个市场,现在射频前端各器件趋势如下——

  • 滤波器:可分为射频滤波器与基站滤波器,SAW(声表面波)、BAW(体声波)是目前主流技术,相比SAW,BAW的的频段更高、损耗更小、频率范围更广[12]。目前,SAW偏向中低频率数据处理,以日系厂商为主,市场应用空间更大,BAW偏向高频率数据处理,以美系厂商为主,应用空间更窄,但价值量高[2]。从产业链端来看,上游关键原料包括压电晶片(SAW常用钽酸锂、铌酸锂等,FBAR常用氮化铝等)和陶瓷基板,主要集中在日本;中游器件制造集中在日本和美国;下游需求端包括手机、车载终端、VR设备等。4G时代,一款手机仅需30多个滤波器,而5G时期通常要使用上百个滤波器,此外单价也从7.5美金提升至8~12美元,市场空间正逐步攀升[13]。市场方面,滤波器将从2022年的121亿美元提升至2030年的346.1亿美元,年复合增长率16.2%;[14]

  • 放大器:分为射频低噪声放大器和射频功率放大器两类,主要采用PHEMT和HBT两类晶体管实现,X波段及以上频段主要采用频率高、噪声低、输出功率大的PHEMT工艺,HBT工艺则在高速、大动态范围、低谐波失真、低相位噪声等应用占据独特地位[15],只有满足一定技术指标的放大器才具备实用性,包括功率输出、系统效率、频率范围和失真等,国内玩家包括慧智微、紫光展锐、飞骧科技、昂瑞微等。市场方面,PA将从2022年的50.3亿美元增长至2032年的210.4亿美元,年复合增长率15%[16],LNA将从2020年的20.5亿美元增长至2027年的32.9亿美元,年复合增长率6.97%;[17]

  • 射频开关:主要包括传导开关和天线开关两类,主要采用RF-SOI工艺,广泛应用于智能手机等移动智能终端[11]。市场方面,射频开关将从2020年的40.2亿美元增长至2027年的85.6亿美元,年复合增长率11.4%;[18]

  • 双工器:又称天线共用器,由两组不同频率的带阻滤波器组成,避免本机发射信号传输到接收机,技术指标主要包括工作频率范围、隔离度、插入损耗、稳定度、电压驻波比(VSWR),市场方面,双工器将从2022年的78.5亿美元增长至2023年的216.2亿美元,年复合增长率,10.7%。[19]

国产射频前端芯片格局和无线通信频谱分配

不同射频前端器件的材料、特殊制造工艺都在不断发展[20]

射频前端全球市场增长稳定,且集中度极高。Yole数据显示,美国的思佳讯(Skyworks)、博通(Broadcom)、威讯联合半导体(Qorvo)、高通(Qualcomm)和日本的村田(Murata)五家厂商的产品在2021年和2022年占据了超过80%的市场份额,国内厂商锐迪科、国民飞骧、唯捷创芯、韦尔股份等则只能分食仅剩的20%市场份额。

需指出的是,虽然本土厂商已不断在射频开关、低噪声放大器等细分领域实现突破,但依然缺乏中高端产品,高度依赖进口。[40]

国产射频前端芯片格局和无线通信频谱分配

国产射频芯片关键事件,制表丨果壳硬科技

参考资料丨半导体行业观察[41][42],集微网[43]《军民两用技术与产品》[44]

当国产射频芯片赛道挤满玩家之后,内卷开始,曾经的香饽饽开始出现异样。

国产射频前端芯片五个赛道与五个标杆

国频前端芯片企业的成功基本是基于单点突破的,最终形成了五个赛道和五个标杆。个人看来,滤波器是一个很大的市场,但分立滤波器很难形成一个赛道和龙头企业。射频前端芯片的末端是模组,接收滤波器的尽头是DiFEM和LFEM,而发射滤波器的尽头则是PAMiD。

1

赛道一:射频开关/LNA,

标杆企业:卓胜微

江苏卓胜微电子股份有限公司成立于2012年8月10日,于2019年6月18日在深圳证券交易所创业板上市,是一家专注于射频集成电路领域的研究、开发、生产与销售的高新技术企业。公司通过多年的技术经验积累,持续完善公司产品矩阵,主要向市场提供射频开关、射频低噪声放大器、射频滤波器、射频功率放大器等射频前端分立器件及各类模组产品,同时公司还对外提供低功耗蓝牙微控制器芯片。目前公司已初步完成射频前端全品类的纵深布局,形成资源和技术平台的竞争优势,成为国内领先覆盖从研发设计、晶圆制造、封装测试到销售等完整产业链的射频前端供应商。

国产射频前端芯片格局和无线通信频谱分配

卓胜微自成立以来经营业绩和利润保持平稳增长,营业收入从2014年的4400万人民币增长至2018年的5.6亿人民币。2018年分立射频开关营业收入4.6亿人民币,占比82%;LNA营业收入8500万人民币,占比15%。而在上市后,2019年的营业收入更是达到了15.12亿人民币,增长超过3倍。2022前三季度,实现营业收入30.17亿人民币,2022年营收预计为41.67亿元。

国产射频前端芯片格局和无线通信频谱分配

卓胜微在上市后,进入所有手机品牌客户,锁定第一供应商的位置,助力业绩快速增长。与此同时,卓胜微从分立开关转向DiFEM和LFEM,其业绩再次得到快速增长。2021年,卓盛微推出了PAMiF,标志着正式进军手机PA,未来也必然会向PAMiD迈进。

国产射频前端芯片的第一个赛道,将在卓胜微的主导和射频行业的推动作用下,从从分立开关/LNA赛道逐渐转变为DiFEM和LFEM赛道。

2

赛道二:Phase2和Phase5N PA,

标杆企业:唯捷创芯

中国于2008年4月1日开始普及3G网络,目前有三种3G标准:WCDMA、CDMA 2000、TD-SCDMA。

国产射频前端芯片格局和无线通信频谱分配

作为国内PA行业的领先力量的唯捷创芯成立于2010年6月,为3G PA而生,一直专注于射频前端及高端模拟芯片的研发与销售,产品主要应用于智能手机等移动终端,是手机中的核心芯片之一。2012 年公司独立研发的射频功率放大器芯片开始量产,2013 年公司即进入全国集成电路设计企业前 30 强。到2014年,唯捷创芯果断放弃3G PA,进入了4G Phase2 PA,并于2016年开始将产品投放市场,到2018年,其销售额达到了2.83亿元。此后,唯捷创芯营收进入快车道,2019年,2020年,2021年,营业收入分别达到5.58亿,17.86亿和35.09亿人民币。此外,除了在现有产品上取得突破性进展,公司还大力投入到下一代产品中,目前5G产品已在预研阶段。

2022年手机出货量大幅下滑,唯捷创芯前三季度营业收入约17.77亿元,预计全年应收将达到25亿元左右,较2021年下降30%。尽管如此,Phase2和Phase5N PA产品,唯捷创芯仍然是国内手机品牌客户的第一供应商。

与此同时,唯捷创芯也正在全力布局PAMiD和PAMiF产品,在分立开关领域加大技术、资金和人力投入。

3

赛道三:PAMiD和PAMiF,

标杆企业:慧智微

慧智微成立于2011年11月,是一家为智能手机、物联网等领域提供射频前端的芯片设计公司,在PA模组产品上进入较早,并取得了一系列成果和优势。前端PA/LNA模块采用了可重构架构,集成度更高,而使用晶圆更少,有助于兼容更大尺寸的滤波器;由于其具有软件调优特性,因此便于集成后的二次适配;同时通过产品迭代和不断积累,具备了PAMiD封装控制能力。

国产射频前端芯片格局和无线通信频谱分配

公司具备全套射频前端芯片设计能力和集成化模组研发能力,技术体系以功率放大器(PA)的设计能力为核心,兼具低噪声放大器(LNA)、射频开关(Switch)、集成无源器件滤波器(IPD Filter)等射频器件的设计能力,产品系列覆盖的通信频段需求包括 2G、3G、4G、3GHz以下的5G重耕频段、3GHz~6GHz的5G新频段等,可为客户提供无线通信射频前端发射模组、接收模组等,其产品应用于三星、OPPO、vivo、荣耀等国内外智能手机品牌机型,并进入闻泰科技、华勤通讯等一线移动终端设备ODM厂商和移远通信、广和通、日海智能等头部无线通信模组厂商。慧智微专注于可重构射频前端架构,采用基于“绝缘硅(SOI)+砷化镓(GaAs)”两种材料体系的混合架构射频前端技术路线,并实现技术突破及规模商用,使射频前端器件可以通过软件配置实现不同频段、模式、制式和场景下的复用,取得性能、成本、尺寸多方面优化。

4

赛道四:WiFi FEM,

标杆企业:康希通信

康希通信科技(上海)有限公司成立于2014年9月26日,由国际上在射频半导体设计、应用、生产和销售领域经验丰富的专业人才归国组建而成,凭借在射频前端领域深厚的技术积累与研发实力,为业界带来了康希通信特有的小尺寸、高线性和高效率 GaAs + CMOS 射频前端解决方案。康希通信专注于WiFiFEM研发,2020年,康希通信抓住WiFi6FEM的机会,实现了8111万销售额,并在此后用技术和产品证明自己,在2021年和2022年上半年,销售额分别达到3.42亿元和2.03亿元,相比于2019年的2857万销售额,保持了稳定且快速的增长。此外,随着新技术标准——WiFi7的快速崛起,康希通信凭借其技术突破,在WiFi7 FEM方面得到了全球主流厂商的认可,未来可期。

国产射频前端芯片格局和无线通信频谱分配

5

赛道五:基站PA,

标杆企业:某上市企业

基站PA领域,国内已有两家上市公司和一家准上市公司。两家上市公司为IDM公司,而准上市公司是fabless设计公司。

基站PA分GaN PA、LDMOS PA、GaAs PA,这些产品长期被国外厂家所垄断,近些年国内公司也开始研发,真正做到批量出货的公司较少,目前,基站PA主要采用LDMOS PA,但是LDMOS技术适用于低频段,在高频段领域存在局限性。行业人指出,5G基站GaN PA将成为主流技术,GaN PA能较好的适用于大规模MIMO技术。2021年和2022年两年期间,国内基站PA市场规模约50亿元,预测2023年将下降至30亿元左右。

目前,在基站PA领域,宏基站PA领域的企业有日本住友和美国Cree,微基站PA领域的企业有Skyworks和Qorvo等。

02

五类芯片供应商

芯片设计公司是典型的技术基础、市场导向的公司。在国内射频领域竞争日益激化的如今,射频设计公司若想脱颖而出,不仅需要不断研发和改进射频技术,同时也要兼顾成本。而若想要在成本上取得优势,就必须选择一个正确的芯片供应商,从而布局供应链战略。

1

砷化镓晶圆厂

砷化镓材料是前端射频器件的重要制造材料之一,是制作射频前端芯片的关键晶圆工艺。选择砷化镓晶圆厂首先要看其工艺的价格、性能和稳定性,其次看晶圆工艺的产能。

国产射频前端芯片格局和无线通信频谱分配

目前,国产射频前端芯片选用的砷化镓晶圆代工厂有:稳懋(WIN)、宏杰科(AWSC)、立昂微、三安集成、常州承芯、福建福联。

国产射频前端芯片格局和无线通信频谱分配

2

SOI晶圆厂

SOI 晶圆具备高效能、低功耗等特性,相较传统矽晶圆,在高频与高功率环境中更具优势。同时,SOI 晶圆单价与毛利是传统矽晶圆的数倍,在获利和成本方面有着优势。目前,SOI晶圆供应商主要有三家国际大厂,分别是GF、UMC、TowerJazz。国内来看,SOI晶圆虽然是国产射频公司的瓶颈,但随着技术进步,国产SOI晶圆厂已经有了较大的进步和发展。目前国内SOI晶圆厂包括宁波中芯、华虹宏力、武汉新芯等。

国产射频前端芯片格局和无线通信频谱分配

3

基板厂

目前主要的射频基板厂包括越亚半导体、深南电路、綦鼎科技、兴森快捷等。其中越亚半导体作为国内最早生产IC封装载板的陆资企业之一,其产品在全球手机射频芯片封装基板市场占有率高达前三名,是全球首批利用自主专利技术“铜柱增层法”实现“无芯”IC封装载板量产的企业,其生产的射频模块封装载板、高算力处理器IC封装载板、和系统级嵌埋封装模组在国内外相关细分市场均处于领先地位。

4

滤波器厂

滤波器成本在PAMID产品成本中占比高达60%。目前国内PAMID产品的滤波器厂主要是村田、太诱、RF360。

5

封测厂

封测是国产射频前端芯片中规模最大的领域之一,在300亿的国产射频前端芯片市场份额中,占据了约80亿的市场规模,而封测成本作为射频芯片公司的重要成本支出,逐渐受到重视。

目前国产射频前端芯片的封测厂主要包括:长电科技、华天科技、嘉盛半导体、通富微电、宁波甬矽。

国产射频前端芯片格局和无线通信频谱分配

03

国产射频前端芯片壁垒分析

一、手机PA壁垒随近几年国产手机PA技术的飞速发展,除PAMID外的PA产品技术发展较为成熟,竞争逐渐转移到成本上来。手机PA领域的初创公司的进入壁垒,主要在于客户门槛和供应商价格上。

二、分立开关壁垒分立开关每个月的出货量要达到一个较高的层次,才有机会实现一定数额的销售额,从而获得供应商的优惠价格。因此在分离开关领域,壁垒在于公司的销售量能否达标。

三、DiFEM、LFEM壁垒DiFEM、LFEM赛道公司数量较多,因此价格战是不可避免的。因此,其壁垒首先在于SAW滤波器资源和大客户门槛,其次便在于成本。

四、WiFi FEM壁垒WiFi PA技术门槛较高,研发需要大量的时间投入。同时相对于手机PA,其客户门槛和成本优势较低,因此主要壁垒存在于技术层面。

五、基站PA壁垒基站PA用户更倾向于选择IDM供应商,这使得大部分存在技术差距和性能较落后的芯片设计公司难以获取机会。由此,基站PA的壁垒主要是客户壁垒。

六、滤波器壁垒滤波器的制作需要做IDM、开发EDA、进行封装等,因此存在着高于其他射频前端芯片的壁垒,而其中最大的壁垒在于专利。

    本文的目的是介绍高速ADC相关的理论和知识,详细介绍了采样理论、数据手册指标、ADC选型准则和评估方法、时钟抖动和其它一些通用的系统级考虑。另外,一些用户希望通过交织、平均或抖动(dithering)技术进一步提升ADC的性能。

国产射频前端芯片格局和无线通信频谱分配

推荐链接

高速ADC PCB设计找励知!

1. 引言

基本的ADC框图和术语如下图所示:国产射频前端芯片格局和无线通信频谱分配

随着数字信号处理技术和数字电路工作速度的提高,以及对于系统灵敏度等要求的不断提高,对于高速、高精度的 ADC(Analog to Digital Converter)、DAC(Digital to Analog Converter)的指标都提出了很高的要求。比如在雷达和卫星通信中,所需要的信号带宽已经达到了 2 GHz 以上,而下一代的 5G 移动通信技术在使用毫米波频段时也可能会用到 2 GHz 以上的信号带宽。虽然有些场合(比如线性调频雷达)可能采用频段拼接的方式去实现高的带宽,但是毕竟拼接的方式比较复杂,而且对于通信或其它复杂调制信号的传输也有很多限制。

根据 Nyquist 采样定律,采样率至少要是信号带宽的 2 倍以上。同时为了支持灵活的制式、相控阵或大规模 MIMO 的波束赋形,现代的收发机模块越来越普遍采用数字中频直接采样,这其实进一步提高了对于高速 ADC/DAC 芯片的性能要求。下图是一个典型的全数字雷达收发信机模块的结构。高速数字化仪和多通道数据采集解决方案 | Keysight根据 Nyquist 采样定律,采样率至少要是信号带宽的 2 倍以上。同时为了支持灵活的制式、相控阵或大规模 MIMO 的波束赋形,现代的收发机模块越来越普遍采用数字中频直接采样,这其实进一步提高了对于高速 ADC/DAC 芯片的性能要求。下图是一个典型的全数字雷达收发信机模块的结构。

国产射频前端芯片格局和无线通信频谱分配

高速 ADC/DAC 在现代全数字雷达中的应用

可以看到,ADC/DAC 芯片是模拟域和数字域的边界。一旦信号转换到数字域,所有的信号都可以通过软件算法进行处理和补偿,而且这个处理过程通常不会引起额外的噪声和信号失真,因此把 ADC/DAC 芯片前移、实现全数字化处理是现代通信、雷达技术的发展趋势。

在全数字化的发展过程中,ADC/DAC 芯片需要采样或者输出越来越高的频率、越来越高带宽的信号。而在模拟到数字或者数字到模拟的转换过程中造成的噪声和信号失真通常是很难补偿的,并且会对系统性能造成重大影响。所以,高速 ADC/DAC 芯片在采样或者产生高频信号时的性能对于系统指标至关重要。

目前在很多专用领域,使用的 ADC/DAC 的采样率可以达到非常高的程度。比如 Fujitsu 公司可以提供 110G~130GHz 的 IP 核,Keysight 公司在高精度示波器里用到了单片 40GHz 采样率、10bit 的 ADC 芯片,以及 Keysight 公司在高带宽任意波发生器里用到了 92GHz 采样率、8bit 的 DAC 芯片等。这些专用的芯片通常用于特殊应用,比如光通信或者高端仪表等,比较难以单独获得。

在商用领域,很多 ADC/DAC 芯片的采样率也都已经达到了 GHz 以上,比如 TI 公司的 ADC 12J4000 是 4 GHz 采样率、12bit 分辨率的高速 ADC 芯片;而 ADI 公司的 AD9129 是 5.6 GHz 采样率、14 bit 分辨率的高速 DAC 芯片。这一方面要求 ADC 有比较高的采样率以采集高带宽的输入信号,另一方面又要有比较高的位数以分辨细微的变化。

国产射频前端芯片格局和无线通信频谱分配

随着 ADC/DAC 的采样率的提高,高速 ADC/DAC 的数字侧的接口技术也在发生着比较大的变化。

低速串行接口:很多低速的 ADC/DAC 芯片采用 I2C 或 SPI 等低速串行总线把多路并行的数字信号复用到几根串行线上进行传输。由于 I2C 或 SPI 总线的传输速度大部分在10Mbps 以下,所以这种接口主要适用于MHz 以下采样率的ADC/DAC 芯片。

并行 LVCMOS 或 LVDS 接口:对于几 MHz 甚至几百 MHz 采样率的芯片来说,由于信号复用后数据速率太高,所以基本上采用并行的数据传输方式,即每位分辨率对应 1 根数据线(比如 14 位的 ADC 芯片就采用 14 根数据线),然后这些数据线共用 1 根时钟线进行信号传输。这种方法的好处是接口时序比较简单, 但是由于每 1 位分辨率就要占用 1 根数据线,所以占用芯片管脚较多。

JESD204B 串行接口:对于更高速率的 ADC/DAC 芯片来说,由于采样时钟频率更高,时序裕量更小,采用并行 LVCMOS 或 LVDS 接口的布线难度很大,而且占用的布线空间较大。为了解决这个问题,目前更高速和小型化的ADC/DAC 芯片都开始采用串行的JESD204B 接口。JESD204B 接口是把多位要传输的数据合并到一对或几对差分线上,同时采用现在成熟的 Serdes(串行-解串行)技术用数据帧的方式进行信号传输,每对差分线都有独立的 8b/10b 编码和时钟恢复电路。采用这种方法有几个好处:首先数据传输速率更高,每对差分线按现在的标准最高可以实现 12.5 Gbps 的信号传输,可以用更少的线对实现高速数据传输;其次各对线不再共用采样时钟,这样对于各对差分线间等长的要求大大放宽;借用现代 Serdes 芯片的预加重和均衡技术可以实现更远距离的信号传输,甚至可以直接把数据直接调制到光上进行远距离传输;可以灵活更换芯片,通过调整JESD204B 接口里的帧格式,同一组数字接口可以支持不同采样率或分辨率的ADC 芯片,方便了系统更新升级。

ADC 的主要性能指标分为静态和动态两部分:

主要静态指标:

Differential Non-Linearity (DNL)

Integral Non-Linearity (INL)

Offset Error

主要动态指标:

Total harmonic distortion (THD)

Signal-to-noise plus distortion (SINAD)

Effective Number of Bits (ENOB)

Signal-to-noise ratio (SNR)

Spurious free dynamic range (SFDR)

要进行 ADC 这些众多指标的验证,可用的方法很多。最常用的方法是给 ADC 的输入端提供一个理想的正弦波信号,然后对 ADC 对这个信号采样后的数据进行采集和分析。因此,ADC 的性能测试需要多台仪器的配合并用软件对测试结果进行分析。下图是最常用的进行ADC 性能测试的方法。

国产射频前端芯片格局和无线通信频谱分配

在测试过程中,第 1 个信号发生器用于产生正弦波被测信号,第 2 个信号发生器用于产生采样时钟,采样后的数字信号经 FFT 处理进行频谱分析和计算得到动态指标,经过直方图统计得到静态指标。

静态指标是对正弦波的采样数据进行幅度分布的直方图统计,然后间接计算得到。如下图所示,理想正想波的幅度分布应该是左面的形状,由于非线性等的影响,分布可能会变成右边的形状,通过对实际直方图和理想直方图的对比计, 可以得出静态参数的指标。

以下是 DNL 和 INL 的计算公式:

国产射频前端芯片格局和无线通信频谱分配

动态指标是对正弦波的采样数据进行 FFT 频谱分析,然后计算频域的失真间接得到。一个理想的正弦波经 A/D 采样,再做后频谱分析可能会变成如下图的形状。除了主信号以外,由于ADC 芯片的噪声和失真,在频谱上还额外产生了很多噪声、谐波和杂散,通过对这些分量的运算,可以得到ADC 的动态参数。

国产射频前端芯片格局和无线通信频谱分配

通过 FFT 频谱分析测试动态参数

下面是动态参数的计算公式:

国产射频前端芯片格局和无线通信频谱分配

对于产生被测信号和采样时钟的信号发生器来说,为了得到比较理想的测试效果, 要求其时间抖动(或者相位噪声)性能要足够小,因为采样时钟的抖动会造成采样 位置的偏差,而采样位置的偏差会带来采样幅度的偏差,从而带来额外的噪声,从 而制约信噪比的测量结果。下图是时钟或者信号抖动引起信噪比恶化的示意图,以 及根据信噪比要求及输入信号频率计算信号抖动要求的公式。

2. 频谱性能术语

SNR:信噪比,是指基频功率与除去直流及前5次谐波的噪底功率之比,有些数据手册可能是要除掉前9次谐波。基频也叫信号或者载波。SNR的单位是dBc(当用基频的绝对作参考时);或者dBFS。

SFDR:无杂散动态范围。SFDR是基频功率与最高的杂散功率之比。

THD:总谐波失真。THD是基频功率与前5次谐波功率之比。THD在单位通常是dBc。与SNR类似,有的数据手册可能取前9次谐波来计算THD。

SINAD:信号噪声与失真。SINAD的单位可能是dBc或者dBFS。

ENOB:有效位数。国产射频前端芯片格局和无线通信频谱分配

理想SNR=6.02*n+1.76,当n=ENOB时,理想SNR=SNR。对于理想ADC而言,由于没有谐波,其SINAD=SNR。

例如,设计师需要一个SINAD为75dB的ADC,则ENOB=(75-1.76)/6.02=12.2bits,那么至少要选14位甚至16位的ADC才能满足要求。

3. 奈奎斯特、混叠、欠采样、过采样和带宽

根据奈奎斯特采样定理,采样时钟频率至少是输入模拟信号频率的2倍。

过采样:采样频率大于信号频率的2倍,即FIN<FS/2。FS/2即奈奎斯特频率。
欠采样:信号频率大于奈奎斯特频率。此时,会导致混叠。
混叠并非一无是处,它可以将高频信号混频到低频信号,可以省去额外的混频器,以减少系统功耗和成本,但前提是必须慎重考虑频率规划和ADC选型。
国产射频前端芯片格局和无线通信频谱分配
从上图可知,在ADC选型时,需要考虑如下两点:
A:ADC满足期望的频率规划
B:输入模拟信号的带宽小于ADC的奈奎斯特频率另外,ADC的带宽还要满足输入模拟信号的频率需求。

4.ADC管脚接口

一般来说,ADC包括以下6种接口:

  • 模拟输入

  • 参考/共模模式

  • 时钟输入

  • 数字输出

  • 电源

  • GND

4.1模拟输入高速ADC通常采用差分输入,输入信号是180度反相的,使得信号是叠加的。与单端输入相比,由于消除了共模噪声,差分信号改善了ADC的噪声特性。此外,差分信号还降低了偶次谐波,这是由于信号被偏移了180度,对于偶次谐波,导致2x180,4X180,6X180度的相移,如下图所示

国产射频前端芯片格局和无线通信频谱分配

与单端信号相比,差分信号的幅度仅于等效单端信号的一半,从而差分信号具有更优的谐波性能。小信号使得ADC具有更宽的裕量。一般而言,更多的裕量可以使ADC工作在线性区域,减少产生谐波的非线性影响。如下图所示:

国产射频前端芯片格局和无线通信频谱分配
下图所示为双变压器ADC输入接口,变压器用于将单端信号转换成差分信号。
国产射频前端芯片格局和无线通信频谱分配
单变压器会有少量的不匹配,会产生偶次谐波。第二级变压器用于校正这种不匹配,以降低偶次谐波。在高频信号时,采用变压器可以获得较高的性能。但是,对于基带信号或者低频信号,通常采用运放驱动ADC输入。
4.2参考/共模模式
参考电压和共模电压在ADC中具有不同功能。在许多ADC中,参考电压和共模电压具有相同的电平,或者有时ADC管脚会复用参考电压和共模电压功能。因此,这些信号术语有时会导致误解。
参考电压决定的ADC的动态范围。数据手册通常会提供参考电压和动态范围的关系。
国产射频前端芯片格局和无线通信频谱分配

参考电压可以由ADC内部生成,或者外部提供。为了获得数据手册标注的性能,需要提供正确的参考电压。对于外部参考,应尽量降低外部参考电压的直流噪声。参考电压上的噪声会直接影响ADC的SNR。

图11中,共模电压VCM是指输入到差分模拟输入信号的直流电平。VCM用于将将差分输入信号偏置在电源和GND的中间。

VCM有以下几种应用方式:

  • 有些ADC有VCM管脚,输出内部产生的VCM
  • 有些ADC将VREF设置成与VCM相同的电平,因此,VREF可用于生成VCM
  • 设计师可选择外部提供VCM
对于外部产生的VCM,必须保证其电平与数据手册要求一致,错误的VCM电平会降低ADC的SNR。
4.3时钟输入/抖动

高速ADC通常采用差分时钟输入。时钟抖动及斜率是影响ADC的SNR的重要因素。时钟抖动对SNR的影响如下所示:

国产射频前端芯片格局和无线通信频谱分配
国产射频前端芯片格局和无线通信频谱分配

由上可知,对于理想ADC,时钟频率并不会影响SNR。若不考虑时钟抖动,时钟频率达到ADC设计极限(诸如建立、保持或模拟建立时间),从而最终导致SNR下降。抖动不变时,SNR随输入信号频率增加而降低。由上图所示,指定时钟抖动时,SNR随信号频率增加而降低。高频模拟输入信号对于时钟抖动有较大的误差。如果时钟信号上有随机噪声,会表现在频谱图上。如果时钟信号上有确定的误差信号,这个信号会与ADC的输入信号混合在一起,在频谱图上表现为杂散。设计师必须考虑时钟抖动的两个重要因素。其一是ADC的孔径延迟,其二是外部输入时钟的抖动。这两个因素共同产生的抖动影响ADC的采样误差。设计实例:设计需求如下:SNR=75dBFIN=75MHz客户选定的ADC其孔径抖动=80fs为了满足客户的SNR需求,客户应用所能容忍的最大抖动是多少?A:用公式3求解抖动B:用公式4求解外部时钟抖动因此,外部输入时钟抖动必须小于397fs。下图展示了慢时钟沿导致较大的孔径抖动的情形。对于正弦时钟,增大时钟幅度可以改善孔径抖动进而提高ADC的SNR。

国产射频前端芯片格局和无线通信频谱分配
正弦波幅度与SNR的关系如下图所示:
国产射频前端芯片格局和无线通信频谱分配

那么问题来了,如果关注时钟上升斜坡,那为什么不直接给ADC提供方波时钟信号?答案是:方波时钟确实是一个可行的ADC时钟选择。但是,设计者必须在正弦和方波之间做出一系列的折衷。

其一是低抖动方波时钟与时钟频率范围间的折衷。对于大多数应用,通过窄带SAW或晶体滤波器以改进ADC时钟的close-in相位噪声(抖动)。滤波后,时钟变成低抖动正弦时钟,可以直接提供给ADC。这种方法的局限在于时钟频率范围受限于滤波器带宽。一些公司有时钟抖动清除及时钟分配芯片,这些芯片具有较好的相噪性能、方波输出和较宽的频率范围,其相噪特性足以满足系统需求,而不需要额外滤波器。

其二是方波时钟与正弦时钟在信号完整性方面的折衷。与正弦信号相比,方波信号具有丰富的谐波,具有高频分量。由于信号反射及对其它信号的干扰,高频分量会对电路设计带来较大困难。不管采用哪种时钟信号,必须对电路设计着重考虑,以满足ADC的抖动需求。

4.4实验评估

ADC的实验评估主要包括软件和硬件两个方面。

ADC实验评估的软件手段主要是FFT。由于其高速及准确性,FFT是时域到频域变换的卓越评估工具。

要实现FFT,必须理解一致性、加窗和频谱泄漏等概念。

下图显示了加窗和频谱泄漏。窗口选择不当会导致频谱泄漏。

国产射频前端芯片格局和无线通信频谱分配

某些设计者需要非整数个周期。在这些特殊情况下,由于频谱泄漏,不能使用FFT,可以使用布莱克曼窗或者傅利叶分析。这种方法允许采集非整数个周期信号,但是需要更多计算时间并且会对噪底计算和频率响应引入少量误差。

FFT一致性定义如下:

国产射频前端芯片格局和无线通信频谱分配

上式中的参数需遵循以下规则:
规则1:M是奇整数。M为整数是为了避免频谱泄漏,奇数的要求是由于规则3。
规则2:N是2的幂。FFT的点数必须是2的幂,通常是4096,8192,16384,32768或65536。选择N时,需要在计算时间、测量重复性等因素之间做权衡。
规则3:M和N是互质数。M和N互质是为了保证采集到非重复数的样本。由于FFT的特性,重复样本除了带来额外的计算量外,并不能提供更多的有用信息。由于N是2的幂,若限定M是奇整数,则可保证M和N互质。
国产射频前端芯片格局和无线通信频谱分配

规则4:FIN与FS的分辨率须大于输入源的最小分辨率要求。例如,模拟输入和时钟源的最小分辨率为10Hz,则它们不能被设置为小于10Hz的分辨率。在做FFT时,如果频率分辨率小于输入源的分辨率,会采集到非整数个周期,进而引起频谱泄漏。

设计实例:
需求如下:
Fin=70MHz
Fs=125Msps
分辨率为1Hz
求解M,N,Fin,Fs。
1)取N=8192,M=NFin/Fs=4587.52,取M=4587.
2)根据N重新计算Fs(保证分辨率为1Hz)
X=Fs/N=125M/8192=15258.789
X取整为Xnew=15258.
新的Fs=XnewN=152588192=124.993536Msps
3)计算新的Fin
Fin=FsM/N=124.993536Msps*4587/8192=69.9988446MHz

ADC实验评估的硬件包括:
(1)时钟源:为达到所需的抖动要求,需通过BPF滤除close-in和宽带噪声
(2)模拟输入源:为达到所需的噪声和谐波要求,需通过BPF滤除噪声和谐波
(3)数据采集仪:保证采集仪具有足够的速度和存储容量用于FFT处理

典型的ADC实验设置如下图所示:

国产射频前端芯片格局和无线通信频谱分配

5.交织采样

高端用户通常推动ADC SNR和采样速度的极限。如果当前最高端的ADC的SNR或者采样速度仍不能满足用户要求,那么交织采样是一个可行的解决方案。
下图所示为ADC交织采样:
国产射频前端芯片格局和无线通信频谱分配

两个ADC的模拟输入并联连接,采样时钟相差180度,从而实现采样速度翻倍。采样速度翻倍有两个好处,其一是提高的采样信号带宽,其二是交织采样将噪底在更宽的带宽上进行扩展,可将噪底降低3dB,如下图所示:

国产射频前端芯片格局和无线通信频谱分配

单片ADC噪底计算公式如下:

国产射频前端芯片格局和无线通信频谱分配

当多片ADC交织时,噪底计算公式如下:

国产射频前端芯片格局和无线通信频谱分配

两片或多片ADC交织也带来了另外的设计挑战。ADC之间的DC偏移的差异会在特定位置产生频谱分量。ADC之间的增益差异、INL差异和时钟相位误差会在时钟和模拟输入混频的位置产生频谱分量。

国产射频前端芯片格局和无线通信频谱分配
幸运的是,这些频谱分量的位置是已知的。但是,但是这些误差及误差幅度随温度漂移,导致频率规划非常困难。
下图所示为2片、3片、4片和5片ADC交织的频谱图,假定选用的ADC为理想14bit ADC,且偏移误差<15LSB,增益误差<0.3%。
国产射频前端芯片格局和无线通信频谱分配

由上图可知,尽管ADC的误差较小,但仍会造成较大的杂散响应。设计者需要设计相应的经温度补偿校正的模拟或数字滤波器,滤除这些杂散。

6.ADC取平均

提高单片ADC SNR性能的另一方法是对两片或多片ADC取平均。对两片ADC取平均,可以将SNR提高3dB。

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

这种取平均技术降低了ADC之间的非相关噪声,包括热噪声、内部ADC参考噪声或非确定孔径时钟抖动。相反地,取平均技术并不会降低了ADC之间的相关噪声,包括ADC设计固有的失真、ADC外部时钟和模拟输入的通用误差(common error)。假定各片ADC的SNR相同,则4片取平均可将系统SNR提高6dB,而提高20dB需要100片ADC取平均,计算公式如下:
国产射频前端芯片格局和无线通信频谱分配
国产射频前端芯片格局和无线通信频谱分配
如前所述,孔径时钟抖动是非相关噪声源。假定所有ADC具有相同且随机的孔径时钟抖动,下式可用于计算系统所能容忍的最大外部时钟抖动:
国产射频前端芯片格局和无线通信频谱分配

7.抖动(Dithering)

ADC具有确定性和系统性的错误,且具有重复性。理论上, 可以通过添加一个低量级的随机噪声来最大限度地减少这些错误。添加低量级随机噪声,以改善 ADC 失真的过程称为抖动(Dithering)。

国产射频前端芯片格局和无线通信频谱分配
Dithering的要点如下:
  • Dithering可以降低谐波的水平,但是可能会有增加噪底的负面影响
  • 谐波性能改善与信号的类型和幅度有关,在某些情况下,甚至不会有改善
    为了将SNR恶化降到最低,某些Dithering技术在电路中需要随机化的部分添加噪声,后续又要消除这些噪声
  • Dithering可以ADC外部添加,某些ADC内置了Dithering选项
  • 某些情况下,真实世界中已经包括了足够的表现为抖动的噪声

国产射频前端芯片格局和无线通信频谱分配

设计师要决定是否有必要采用Dithering。Dithering是一项复杂的技术,在决定采用前必须深刻理解其内涵。频谱分配是指政府机构将不同的无线电频率分配给不同的用途。如果没有分配,频谱将无法使用,因为广播公司和通信信号发射器会互相干扰。在过去的二十年里,随着越来越多的商业无线应用的产生,频谱变得愈发珍贵。这也意味着对于已经成为稀缺资源的频谱的竞争越发激烈。一个国家如何管理这种竞争,以及如何在各种用途之间做出决定,是其国民经济和国防的重要决定性因素。从另一种角度说,频谱分配是国家战略竞争的一部分。

01

无线电频谱 国产射频前端芯片格局和无线通信频谱分配

波段划分

国产射频前端芯片格局和无线通信频谱分配

    无线通信网络常用频段为超高频(0.3-3GHz,承载2G/3G/4G)与特高频(3-30GHz,承载5G),特高频为由于5G和部分卫星通信同样会使用C波段(4.0- 8.0GHz),加上地面上的5G信号强度要明显高于卫星信号,可能导致5G信号干扰卫星信号的情况。针对这一情况,市面上有面向卫星用户的滤波器,可减少5G信号带来的干扰。

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

02

运营商频率分配来源


国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配 国家颁给运营商的频率是什么?

国产射频前端芯片格局和无线通信频谱分配简言之就是规定“哪一段频率可以用在什么移动通信系统”。

  • 国家明确分配的是频率范围,并不是我们常见的类似Band40这样的编号,这是3GPP等标准化组织考虑实际应用定义的。

  • 分配的时候已经明确“某一段频率用于部署哪个移动通信系统”,如果运营商不按照这个要求,把这段频率部署其它通信系统,是不符合要求的。

国产射频前端芯片格局和无线通信频谱分配 运营商在现网如何使用这些频率?

国产射频前端芯片格局和无线通信频谱分配 运营商获得国家分配的频率后,要考虑如何使用。根据如何使用能够为用户提供领先竞争对手的网络优势、部署成本、满足国家使用率要求等多方面统筹考虑,部署实施。

国产射频前端芯片格局和无线通信频谱分配

03

中国大陆运营商频谱分配情况

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

04

国际电联现网频谱使用情况


国产射频前端芯片格局和无线通信频谱分配900MHz频段

    目前正在从L900向NL900的设备替换过渡中,未来将会使用NL900方案,NB的200K继续保持,根据需求情况开通NB;如果遇到NB的干扰,无法通过调整天馈的方法解决,则可以使用959.8-960频段错频减少干扰。联通900M和电信800M目前互不共享,单独使用。

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配1800MHz频段

    1800M频段目前双方全量共享,对于电联容量受限的场景,可以协商灵活使用频点进行扩容。

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配2100MHz频段

    2100M频段目前双方部分共享,等待NR2.1的40M扩容后,L2100设备退网。

国产射频前端芯片格局和无线通信频谱分配

    NR2.1的40M使用频率从20M提升至40M的方案如下,地停使用退下的L2100设备建设,我们目前地停使用频率建议为2140-2150,如果在优化过程中发现和NR2.1产生干扰,可以将地停L2100频率调整为2150-2155。

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配3.4/3.5GHz频段

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

Tips

国际电联ITU现行网频段分布(截止至2023年8月)

5G频段:参考3gpp 38.104

    根据3GPP Release 17规范,已指定5G NR 支持的频段列表,5G NR频谱范围可达100GHz,指定了两大频率范围:

Frequency range 1 (FR1):就是我们通常讲的6GHz以下频段

•频率范围:410MHz - 7125MHz
•最大信道带宽100MHz

Frequency range 2 (FR2):就是毫米波频段

FR2-1频率范围:24.25GHz - 52.6GHz,FR2-2频率范围为52.6GHz - 71GHz
•最大信道带宽400MHz

    5G NR支持16CC载波聚合。

    由于5G NR定义了灵活的子载波间隔,不同的子载波间隔对应不同的频率范围,具体如下:

    5G NR频段分为:FDD、TDD、SUL和SDL。SUL和SDL为辅助频段(Supplementary Bands),分别代表上行和下行。

    与LTE不同,5G NR频段号标识以“n”开头,比如LTE的B20(Band 20),5G NR称为n20。

    关于5G NR NTN(非地面网络)频段:3GPP Release 17 为 5G NTN 引入了两个频段:L 波段 n255 (1626.5-1660.5 MHz / 1525-1559 MHz) 和 S 波段 n256 (1980-2010 MHz / 2170-2200 MHz)。

国产射频前端芯片格局和无线通信频谱分配 5G NR FR1网络频段

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配 5G NR FR2网络频段国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配 全球5G网络频段发放情况

国产射频前端芯片格局和无线通信频谱分配

    目前,一些国家/地区已经为5G专网分配了共享频谱,垂直行业可申请这些频谱资源来自主构建5G专网。
国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配 全球运营商LTE 4G网络频段
国产射频前端芯片格局和无线通信频谱分配
国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配 NB-IoT网络频段

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配 V2X网络频段

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配 3G网络:WCDMA/TD-SCDMA/EVDO和2G网络:GSM/GPRS/EDGE频段

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配 近距离无线通信频段

国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配


国产射频前端芯片格局和无线通信频谱分配 LPWAN,Low-Power Wide-Area Network,低功率广域网络。


国产射频前端芯片格局和无线通信频谱分配

国产射频前端芯片格局和无线通信频谱分配


国产射频前端芯片格局和无线通信频谱分配 GNSS,Global Navigation Satellite System,全球卫星导航系统。

国产射频前端芯片格局和无线通信频谱分配

  • 左青龙
  • 微信扫一扫
  • weinxin
  • 右白虎
  • 微信扫一扫
  • weinxin
admin
  • 本文由 发表于 2023年9月24日23:34:08
  • 转载请保留本文链接(CN-SEC中文网:感谢原作者辛苦付出):
                   国产射频前端芯片格局和无线通信频谱分配http://cn-sec.com/archives/2063672.html

发表评论

匿名网友 填写信息