MD5消息摘要算法

admin 2023年12月11日09:01:09评论12 views字数 6343阅读21分8秒阅读模式

MD5消息摘要算法

一、MD5算法简介

1.1 MD5特点  

    MD5(Message Digest Algorithm 5)中文名为消息摘要算法第五版,是计算机安全领域广泛使用的一种散列函数,用以提供消息完整性保护MD5作为一种常用的摘要算法(或指纹算法),其具有以下几个重要的特点:

  • a. 输入任意长度信息,输出长度固定:MD5 可输入任意长度的信息,其输出均为128位(bit)固定长度的二进制数据
  • b. 运算速度快:MD5的运算均为32位 与、或、非、位移等位运算,因此其运算速率快,几乎不消耗CPU时间。
  • c. 不可逆:根据MD5的的散列结果无法计算原始数据(查字典除外)。
  • d. 碰撞性:原始数据与其MD5散列结果非一一对应,存在多个原始数据MD5结果相同的可能性
  • e. 不安全:2011年,RFC 6151 禁止MD5用作密钥散列消息认证码。

1.2 MD5长度与不安全 

  长度MD5散列结果是128位(bit)固定长度的二进制数据,也就是128个0/1的二进数据。用128位二进制数据呈现MD5的散列结果,对于软件开发者很不友好。一般将二进制转成16进制,每4个二进制数据转化为一个16进制数据128位二进制数据转化为32个十六进制数据128/4 = 32),最终以字符串形式呈现十六进制数据后则为长度为32的字符串

  不安全:2011年,RFC 6151 禁止MD5用作密钥散列消息认证码。

  • a.MD5不安全主要指的是,不可用MD5对原始秘钥进行加密:比如:将用户的登录秘钥进行MD5加密后,存储于数据库中。MD5虽然理论上不可逆,但有些黑客网站通过查字典方式获取MD5原文信息。提前将一些比较常见的密文做MD5运算,将结果保存下来,破译密文时,通过MD5摘要信息直接查询原文。
    比如:字符串 123 的MD5值是 202cb962ac59075b964b07152d234b70 ,黑客在破解后的数据库中看到某位用户的密码是 202cb962ac59075b964b07152d234b70 ,通过字典一查就知道密码明文是 123 了。

  • b. MD5的碰撞性,决定了存在两个不用的输入信息,其MD5相同的可能。
    2009年,中国科学院的谢涛和冯登国仅用了 2的20.96次幂 的碰撞算法复杂度,破解了MD5的碰撞抵抗,该攻击在普通计算机上运行只需要数秒钟。

1.3 MD5用途

  (1)一致性验证

  MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在Unix下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:
MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461
这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程:
  大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为司法机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。
  我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。
  (2)数字证书
  MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹), 以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内 容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的 数字签名应用。
  (3)安全访问认证
  MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等 诸多方面。如在Unix系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行 MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可 以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且 是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数 重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。
  正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是 P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于Unix系统中,这也是为什么Unix系统比一般操作系统更为坚固一个重要原因。


、MD5算法原理

2.1 算法流程

  MD5 摘要算法大概计算过程可以描述如下:

  a. MD5 将 “输入信息” 分为N*512bit的数据分组;
  b. 每一512bit分组又分为16个子分组,每个子分组为32bit的原始数据;      16个子分组分别命名为 M0~M15
  c. 每个子分组都要进行4次运算,运算公式分别为FF、GG、HH、II;总的运算次数为N*16*4(运算均为位运算)。

MD5消息摘要算法

    以上为MD5 摘要算法的大概原理总结,下边按照 rfc1321 中算法的介绍顺序,梳理MD5 摘要算法:

MD5消息摘要算法

2.2 初始化A、B、C、D

    这里需要初始化四个数据 A、B、C、D,这四个变量将用于后续的公式计算。
四个数据均为8个16进制数据组合,每个16进制数据为4bit,每个数据占32bit

// 每个数据占空间 32bit 
// 四个数据分别为 8个 16进制数据的组合构成
// 单个16进制数据占空间 4bit
A: 01 23 45 67 (16进制)
B: 89 ab cd ef (16进制)
C: fe dc ba 98 (16进制)
D: 76 54 32 10 (16进制)

    将A、B、C、D输入计算机进行计算时,A、B、C、D将变化为:

A: 0x67452301
B: 0xefcdab89
C: 0x98badcfe
D: 0x10325476

为什么会变化为 0x67452301、0xefcdab89、0x98badcfe、0x10325476 ?

// A的16进制表示
A: 01 23 45 67 (16进制)
// A的二进制表示
A: 00000 0001 0010 0011 0100 0101 0110 0111 (二进制)

// 计算机中首先编写的为低字节位,当从右向左获取字节数据

//(8位一个字节)时,最终A将变化为0x67452301

A: 67 45 23 01 (16进制)

2.3 分组数据运算

    上文层提到子分组的运算公式:FF、GG、HH、II ,32bit子分组运算公式如下:

// FF、GG、HH、II
// <<< 为循环左移
FF(a ,b ,c ,d ,Mj ,s ,ti) 操作为 a = b + ( (a + F(b,c,d) + Mj + ti) <<< s)
GG(a ,b ,c ,d ,Mj ,s ,ti) 操作为 a = b + ( (a + G(b,c,d) + Mj + ti) <<< s)
HH(a ,b ,c ,d ,Mj ,s ,ti) 操作为 a = b + ( (a + H(b,c,d) + Mj + ti) <<< s)
II(a ,b ,c ,d ,Mj ,s ,ti) 操作为 a = b + ( (a + I(b,c,d) + Mj + ti) <<< s)

// F、G、H、I
F( X ,Y ,Z ) = ( X & Y ) | ( (~X) & Z )
G( X ,Y ,Z ) = ( X & Z ) | ( Y & (~Z) )
H( X ,Y ,Z ) =X ^ Y ^ Z
I( X ,Y ,Z ) =Y ^ ( X | (~Z) )
  • a. 公式中初始输入数据a、b、c、d 为A、B、C、D

  • b. Mj 代表32bit子分组数据,每个子分组数据均需要经过 FF、GG、HH、II 四次运算:
    c. 512bit原始输入数据,有16个子分组,每个分组进行4次运算,总共16 * 4 = 64次运算。

  • d. s 常量数据,代表循环左移的位数。

  • e. ti 常量;

    f. 四个非线性函数(逻辑运算):

    MD5消息摘要算法

    512bit分组数据,64 次位运算如下(输入数据为32bit原始数据,输出为32bit数据):

// 512bit分组数据,16 * 4 次运算
// 输入数据为32bit原始数据,输出为32bit数据
// 第一次运算FF
a = FF(a, b, c, d, M0, 7, 0xd76aa478L);
d = FF(d, a, b, c, M1, 12, 0xe8c7b756L);
c = FF(c, d, a, b, M2, 17, 0x242070dbL);
b = FF(b, c, d, a, M3, 22, 0xc1bdceeeL);
a = FF(a, b, c, d, M4, 7, 0xf57c0fafL);
d = FF(d, a, b, c, M5, 12, 0x4787c62aL);
c = FF(c, d, a, b, M6, 17, 0xa8304613L);
b = FF(b, c, d, a, M7, 22, 0xfd469501L);
a = FF(a, b, c, d, M8, 7, 0x698098d8L);
d = FF(d, a, b, c, M9, 12, 0x8b44f7afL);
c = FF(c, d, a, b, M10, 17, 0xffff5bb1L);
b = FF(b, c, d, a, M11, 22, 0x895cd7beL);
a = FF(a, b, c, d, M12, 7, 0x6b901122L);
d = FF(d, a, b, c, M13, 12, 0xfd987193L);
c = FF(c, d, a, b, M14, 17, 0xa679438eL);
b = FF(b, c, d, a, M15, 22, 0x49b40821L);

// 第二轮运算GG
a = GG(a, b, c, d, M1, 5, 0xf61e2562L);
d = GG(d, a, b, c, M6, 9, 0xc040b340L);
c = GG(c, d, a, b, M11, 14, 0x265e5a51L);
b = GG(b, c, d, a, M0, 20, 0xe9b6c7aaL);
a = GG(a, b, c, d, M5, 5, 0xd62f105dL);
d = GG(d, a, b, c, M10, 9, 0x2441453L);
c = GG(c, d, a, b, M15, 14, 0xd8a1e681L);
b = GG(b, c, d, a, M4, 20, 0xe7d3fbc8L);
a = GG(a, b, c, d, M9, 5, 0x21e1cde6L);
d = GG(d, a, b, c, M14, 9, 0xc33707d6L);
c = GG(c, d, a, b, M3, 14, 0xf4d50d87L);
b = GG(b, c, d, a, M8, 20, 0x455a14edL);
a = GG(a, b, c, d, M13, 5, 0xa9e3e905L);
d = GG(d, a, b, c, M2, 9, 0xfcefa3f8L);
c = GG(c, d, a, b, M7, 14, 0x676f02d9L);
b = GG(b, c, d, a, M12, 20, 0x8d2a4c8aL);

// 第三轮运算HH
a = HH(a, b, c, d, M5, 4, 0xfffa3942L);
d = HH(d, a, b, c, M8, 11, 0x8771f681L);
c = HH(c, d, a, b, M11, 16, 0x6d9d6122L);
b = HH(b, c, d, a, M14, 23, 0xfde5380cL);
a = HH(a, b, c, d, M1, 4, 0xa4beea44L);
d = HH(d, a, b, c, M4, 11, 0x4bdecfa9L);
c = HH(c, d, a, b, M7, 16, 0xf6bb4b60L);
b = HH(b, c, d, a, M10, 23, 0xbebfbc70L);
a = HH(a, b, c, d, M13, 4, 0x289b7ec6L);
d = HH(d, a, b, c, M0, 11, 0xeaa127faL);
c = HH(c, d, a, b, M3, 16, 0xd4ef3085L);
b = HH(b, c, d, a, M6, 23, 0x4881d05L);
a = HH(a, b, c, d, M9, 4, 0xd9d4d039L);
d = HH(d, a, b, c, M12, 11, 0xe6db99e5L);
c = HH(c, d, a, b, M15, 16, 0x1fa27cf8L);
b = HH(b, c, d, a, M2, 23, 0xc4ac5665L);

// 第四轮运算II
a = II(a, b, c, d, M0, 6, 0xf4292244L);
d = II(d, a, b, c, M7, 10, 0x432aff97L);
c = II(c, d, a, b, M14, 15, 0xab9423a7L);
b = II(b, c, d, a, M5, 21, 0xfc93a039L);
a = II(a, b, c, d, M12, 6, 0x655b59c3L);
d = II(d, a, b, c, M3, 10, 0x8f0ccc92L);
c = II(c, d, a, b, M10, 15, 0xffeff47dL);
b = II(b, c, d, a, M1, 21, 0x85845dd1L);
a = II(a, b, c, d, M8, 6, 0x6fa87e4fL);
d = II(d, a, b, c, M15, 10, 0xfe2ce6e0L);
c = II(c, d, a, b, M6, 15, 0xa3014314L);
b = II(b, c, d, a, M13, 21, 0x4e0811a1L);
a = II(a, b, c, d, M4, 6, 0xf7537e82L);
d = II(d, a, b, c, M11, 10, 0xbd3af235L);
c = II(c, d, a, b, M2, 15, 0x2ad7d2bbL);
b = II(b, c, d, a, M9, 21, 0xeb86d391L);

2.4 结果累加

    若A、B、C、D为变量,并且A、B、C、D的初始化信息为 A: 0x67452301;B: 0xefcdab89;C: 0x98badcfe;D: 0x10325476 ,每一512bit分组的运算结果为a、b、c、d。则第N个512bit组的计算结果为:

// a、b、c、d 为每一512bit分组的运算结果;
// A、B、C、D 是下一组计算的输入参数;
// 若无下一个512bit分组 A、B、C、D 则为最终计算结果;
A = a + A;
B = b + B;
C = c + C;
D = d + D;



参考文献

https://zhuanlan.zhihu.com/p/557034655?utm_id=0



原文始发于微信公众号(豆豆咨询):MD5消息摘要算法

  • 左青龙
  • 微信扫一扫
  • weinxin
  • 右白虎
  • 微信扫一扫
  • weinxin
admin
  • 本文由 发表于 2023年12月11日09:01:09
  • 转载请保留本文链接(CN-SEC中文网:感谢原作者辛苦付出):
                   MD5消息摘要算法http://cn-sec.com/archives/2286328.html

发表评论

匿名网友 填写信息