[huayang]
导入方式
import numpy as np
import pandas as pd
数据读取
csv文件
import numpy as np
import pandas as pd
fpath = open("ratings.csv")
ratings = pd.read_csv(fpath)
print(ratings)
使用head()即可返回前几行数据
import numpy as np
import pandas as pd
fpath = open("ratings.csv")
ratings = pd.read_csv(fpath)
print(ratings.head())
使用shape查看数据形状,返回(行数,列数)
import numpy as np
import pandas as pd
fpath = open("ratings.csv")
ratings = pd.read_csv(fpath)
print(ratings.shape)
使用columns查看列名列表
import numpy as np
import pandas as pd
fpath = open("ratings.csv")
ratings = pd.read_csv(fpath)
print(ratings.columns)
使用index查看索引列
import numpy as np
import pandas as pd
fpath = open("ratings.csv")
ratings = pd.read_csv(fpath)
print(ratings.index)
使用dtypes查看每列数据类型
import numpy as np
import pandas as pd
fpath = open("ratings.csv")
ratings = pd.read_csv(fpath)
print(ratings.dtypes)
读取txt文件(需要自己指定分隔符列名)
import numpy as np
import pandas as pd
fpath = open("access_pvuv.txt")
asd = pd.read_csv(fpath,sep="\t",header=None,names=['qwe','asd','zxc'])
print(asd)#sep 指定列的分隔符 ,因为没有标题行所以header为none,names设定列名
读取excel文件
需要安装openpyxl这个库
import numpy as np
import pandas as pd
asd = pd.read_excel('access_pvuv.xlsx')
print(asd)
pandas数据结构
Series
series是一种类似于一维数组的对象,他由一组数据(不同数据类型)
以及一组与之相关的数据标签(即索引)组成
仅有数据列表即可产生最简单的series
import numpy as np
import pandas as pd
s = pd.Series(['1','a','5.2','7'])
print(s)
values元素值的列表
dataframe:二位数据,整个表格,多行多列
[/huayang]
FROM:浅浅淡淡[hellohy]
免责声明:文章中涉及的程序(方法)可能带有攻击性,仅供安全研究与教学之用,读者将其信息做其他用途,由读者承担全部法律及连带责任,本站不承担任何法律及连带责任;如有问题可邮件联系(建议使用企业邮箱或有效邮箱,避免邮件被拦截,联系方式见首页),望知悉。
- 左青龙
- 微信扫一扫
-
- 右白虎
- 微信扫一扫
-
评论