该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
前文回顾(下面的超链接可以点击喔):
-
[Python图像处理] 二.OpenCV+Numpy库读取与修改像素
-
[Python图像处理] 十七.图像锐化与边缘检测之Roberts、Prewitt、Sobel和Laplacian算子
学Python近十年,认识了很多大佬和朋友,感恩。深知自己很菜,得拼命努力前行,编程也没有什么捷径,干就对了。希望未来能更透彻学习和撰写文章,同时非常感谢参考文献中的大佬们的文章和分享,共勉。
- https://blog.csdn.net/eastmount
一.Roberts算子
-
src表示输入图像
-
dst表示输出的边缘图,其大小和通道数与输入图像相同
-
ddepth表示目标图像所需的深度
-
kernel表示卷积核,一个单通道浮点型矩阵
-
anchor表示内核的基准点,其默认值为(-1,-1),位于中心位置
-
delta表示在储存目标图像前可选的添加到像素的值,默认值为0
-
borderType表示边框模式
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#Roberts算子
kernelx = np.array([[-1,0],[0,1]], dtype=int)
kernely = np.array([[0,-1],[1,0]], dtype=int)
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
#转uint8
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Roberts = cv2.addWeighted(absX,0.5,absY,0.5,0)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图形
titles = [u'原始图像', u'Roberts算子']
images = [lenna_img, Roberts]
for i in xrange(2):
plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
二.Prewitt算子
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#Prewitt算子
kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]],dtype=int)
kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]],dtype=int)
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
#转uint8
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图形
titles = [u'原始图像', u'Prewitt算子']
images = [lenna_img, Prewitt]
for i in xrange(2):
plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
三.Sobel算子
-
src表示输入图像
-
dst表示输出的边缘图,其大小和通道数与输入图像相同
-
ddepth表示目标图像所需的深度,针对不同的输入图像,输出目标图像有不同的深度
-
dx表示x方向上的差分阶数,取值1或 0
-
dy表示y方向上的差分阶数,取值1或0
-
ksize表示Sobel算子的大小,其值必须是正数和奇数
-
scale表示缩放导数的比例常数,默认情况下没有伸缩系数
-
delta表示将结果存入目标图像之前,添加到结果中的可选增量值
-
borderType表示边框模式,更多详细信息查阅BorderTypes
-
src表示原数组
-
dst表示输出数组,深度为8位
-
alpha表示比例因子
-
beta表示原数组元素按比例缩放后添加的值
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#Sobel算子
x = cv2.Sobel(grayImage, cv2.CV_16S, 1, 0) #对x求一阶导
y = cv2.Sobel(grayImage, cv2.CV_16S, 0, 1) #对y求一阶导
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图形
titles = [u'原始图像', u'Sobel算子']
images = [lenna_img, Sobel]
for i in xrange(2):
plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
四.Laplacian算子
-
src表示输入图像
-
dst表示输出的边缘图,其大小和通道数与输入图像相同
-
ddepth表示目标图像所需的深度
-
ksize表示用于计算二阶导数的滤波器的孔径大小,其值必须是正数和奇数,且默认值为1,更多详细信息查阅getDerivKernels
-
scale表示计算拉普拉斯算子值的可选比例因子。默认值为1,更多详细信息查阅getDerivKernels
-
delta表示将结果存入目标图像之前,添加到结果中的可选增量值,默认值为0
-
borderType表示边框模式,更多详细信息查阅BorderTypes
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#拉普拉斯算法
dst = cv2.Laplacian(grayImage, cv2.CV_16S, ksize = 3)
Laplacian = cv2.convertScaleAbs(dst)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图形
titles = [u'原始图像', u'Laplacian算子']
images = [lenna_img, Laplacian]
for i in xrange(2):
plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
五.总结代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#高斯滤波
gaussianBlur = cv2.GaussianBlur(grayImage, (3,3), 0)
#阈值处理
ret, binary = cv2.threshold(gaussianBlur, 127, 255, cv2.THRESH_BINARY)
#Roberts算子
kernelx = np.array([[-1,0],[0,1]], dtype=int)
kernely = np.array([[0,-1],[1,0]], dtype=int)
x = cv2.filter2D(binary, cv2.CV_16S, kernelx)
y = cv2.filter2D(binary, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
#Prewitt算子
kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)
kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)
x = cv2.filter2D(binary, cv2.CV_16S, kernelx)
y = cv2.filter2D(binary, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)
#Sobel算子
x = cv2.Sobel(binary, cv2.CV_16S, 1, 0)
y = cv2.Sobel(binary, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
#拉普拉斯算法
dst = cv2.Laplacian(binary, cv2.CV_16S, ksize = 3)
Laplacian = cv2.convertScaleAbs(dst)
#效果图
titles = ['Source Image', 'Binary Image', 'Roberts Image',
'Prewitt Image','Sobel Image', 'Laplacian Image']
images = [lenna_img, binary, Roberts, Prewitt, Sobel, Laplacian]
for i in np.arange(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
这篇文章写于我2019年4月3日下午下课、接晚上上课前,《大数据技术及应用》这门课程我采用Python进行讲解,围绕爬虫、可视化、分析等案例进行。非常高兴看到,晚上的课,同学们提前两个小时就来把前五排的座位占了,这是之前北理工才能看到的,而且是专业课,我非常欣慰,非常高兴!这就是我来这里当老师的目的,我相信不止有文学、电影这类课程这么吸引学生,专业课同样可以,路还很漫长,我还需继续加油,继续探索。
同时,这周末忙完研究生复试,今天和女神来钟书阁看书考博。英语真的太差了,找本书来翻译锻炼下,专业知识也还有好多要学的,时间真是不够。哈哈,笑看人生,加油!
原文始发于微信公众号(娜璋AI安全之家):[Python图像处理] 十七.图像锐化与边缘检测之Roberts、Prewitt、Sobel和Laplacian算子
- 左青龙
- 微信扫一扫
-
- 右白虎
- 微信扫一扫
-
评论