《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安全也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~
前文详细介绍如何学习提取的API序列特征,并构建机器学习算法实现恶意家族分类,这也是安全领域典型的任务或工作。这篇文章将讲解如何构建深度学习模型实现恶意软件家族分类,常见模型包括CNN、BiLSTM、BiGRU,结合注意力机制的CNN+BiLSTM。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!
文章目录:
-
一.恶意软件分析
-
1.静态特征
-
2.动态特征
-
二.基于CNN的恶意家族检测
-
1.数据集
-
2.模型构建
-
3.实验结果
-
三.基于BiLSTM的恶意家族检测
-
1.模型构建
-
2.实验结果
-
四.基于BiGRU的恶意家族检测
-
1.模型构建
-
2.实验结果
-
五.基于CNN+BiLSTM和注意力的恶意家族检测
-
1.模型构建
-
2.实验结果
-
六.总结
前文推荐:
-
[当人工智能遇上安全] 9.基于API序列和深度学习的恶意家族分类实例详解
作者的github资源:
-
https://github.com/eastmountyxz/AI-Security-Paper
一.恶意软件分析
1.静态特征
2.动态特征
二.基于CNN的恶意家族检测
1.数据集
恶意家族 | 类别 | 数量 | 训练集 | 测试集 |
---|---|---|---|---|
AAAA | class1 | 352 | 242 | 110 |
BBBB | class2 | 335 | 235 | 100 |
CCCC | class3 | 363 | 243 | 120 |
DDDD | class4 | 293 | 163 | 130 |
EEEE | class5 | 548 | 358 | 190 |
#coding:utf-8
#By:Eastmount CSDN 2023-05-31
import csv
import re
import os
csv.field_size_limit(500 * 1024 * 1024)
filename = "AAAA_result.csv"
writename = "AAAA_result_final.csv"
fw = open(writename, mode="w", newline="")
writer = csv.writer(fw)
writer.writerow(['no', 'type', 'md5', 'api'])
with open(filename,encoding='utf-8') as fr:
reader = csv.reader(fr)
no = 1
for row in reader: #['no','type','md5','api']
tt = row[1]
md5 = row[2]
api = row[3]
#print(no,tt,md5,api)
#api空值的过滤
if api=="" or api=="api":
continue
else:
writer.writerow([str(no),tt,md5,api])
no += 1
fr.close()
2.模型构建
# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2023-06-27
import pickle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
import tensorflow as tf
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.layers import Convolution1D, MaxPool1D, Flatten
from keras.optimizers import RMSprop
from keras.layers import Bidirectional
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.callbacks import EarlyStopping
from keras.models import load_model
from keras.models import Sequential
from keras.layers.merge import concatenate
import time
"""
import os
os.environ["CUDA_DEVICES_ORDER"] = "PCI_BUS_IS"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
"""
start = time.clock()
#---------------------------------------第一步 数据读取------------------------------------
# 读取测数据集
train_df = pd.read_csv("..\train_dataset.csv")
val_df = pd.read_csv("..\val_dataset.csv")
test_df = pd.read_csv("..\test_dataset.csv")
# 指定数据类型 否则AttributeError: 'float' object has no attribute 'lower' 存在文本为空的现象
# train_df.SentimentText = train_df.SentimentText.astype(str)
print(train_df.head())
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['KaiTi'] #指定默认字体 SimHei黑体
plt.rcParams['axes.unicode_minus'] = False #解决保存图像是负号'
#---------------------------------第二步 OneHotEncoder()编码---------------------------------
# 对数据集的标签数据进行编码 (no apt md5 api)
train_y = train_df.apt
print("Label:")
print(train_y[:10])
val_y = val_df.apt
test_y = test_df.apt
le = LabelEncoder()
train_y = le.fit_transform(train_y).reshape(-1,1)
print("LabelEncoder")
print(train_y[:10])
print(len(train_y))
val_y = le.transform(val_y).reshape(-1,1)
test_y = le.transform(test_y).reshape(-1,1)
Labname = le.classes_
print(Labname)
# 对数据集的标签数据进行one-hot编码
ohe = OneHotEncoder()
train_y = ohe.fit_transform(train_y).toarray()
val_y = ohe.transform(val_y).toarray()
test_y = ohe.transform(test_y).toarray()
print("OneHotEncoder:")
print(train_y[:10])
#-------------------------------第三步 使用Tokenizer对词组进行编码-------------------------------
# 使用Tokenizer对词组进行编码
# 当我们创建了一个Tokenizer对象后,使用该对象的fit_on_texts()函数,以空格去识别每个词
# 可以将输入的文本中的每个词编号,编号是根据词频的,词频越大,编号越小
max_words = 1000
max_len = 200
tok = Tokenizer(num_words=max_words) #使用的最大词语数为1000
print(train_df.api[:5])
print(type(train_df.api))
# 提取token:api
train_value = train_df.api
train_content = [str(a) for a in train_value.tolist()]
val_value = val_df.api
val_content = [str(a) for a in val_value.tolist()]
test_value = test_df.api
test_content = [str(a) for a in test_value.tolist()]
tok.fit_on_texts(train_content)
print(tok)
# 保存训练好的Tokenizer和导入
# saving
with open('tok.pickle', 'wb') as handle:
pickle.dump(tok, handle, protocol=pickle.HIGHEST_PROTOCOL)
# loading
with open('tok.pickle', 'rb') as handle:
tok = pickle.load(handle)
# 使用word_index属性可以看到每次词对应的编码
# 使用word_counts属性可以看到每个词对应的频数
for ii,iterm in enumerate(tok.word_index.items()):
if ii < 10:
print(iterm)
else:
break
print("===================")
for ii,iterm in enumerate(tok.word_counts.items()):
if ii < 10:
print(iterm)
else:
break
# 使用tok.texts_to_sequences()将数据转化为序列
# 使用sequence.pad_sequences()将每个序列调整为相同的长度
# 对每个词编码之后,每句新闻中的每个词就可以用对应的编码表示,即每条新闻可以转变成一个向量了
train_seq = tok.texts_to_sequences(train_content)
val_seq = tok.texts_to_sequences(val_content)
test_seq = tok.texts_to_sequences(test_content)
# 将每个序列调整为相同的长度
train_seq_mat = sequence.pad_sequences(train_seq,maxlen=max_len)
val_seq_mat = sequence.pad_sequences(val_seq,maxlen=max_len)
test_seq_mat = sequence.pad_sequences(test_seq,maxlen=max_len)
print(train_seq_mat.shape) #(1241, 200)
print(val_seq_mat.shape) #(459, 200)
print(test_seq_mat.shape) #(650, 200)
print(train_seq_mat[:2])
#-------------------------------第四步 建立CNN模型并训练-------------------------------
num_labels = 5
inputs = Input(name='inputs',shape=[max_len], dtype='float64')
# 词嵌入(使用预训练的词向量)
layer = Embedding(max_words+1, 256, input_length=max_len, trainable=False)(inputs)
# 词窗大小分别为3,4,5
cnn = Convolution1D(256, 3, padding='same', strides = 1, activation='relu')(layer)
cnn = MaxPool1D(pool_size=3)(cnn)
# 合并三个模型的输出向量
flat = Flatten()(cnn)
drop = Dropout(0.4)(flat)
main_output = Dense(num_labels, activation='softmax')(drop)
model = Model(inputs=inputs, outputs=main_output)
model.summary()
model.compile(loss="categorical_crossentropy",
optimizer='adam', #RMSprop()
metrics=["accuracy"])
# 增加判断 防止再次训练
flag = "train"
if flag == "train":
print("模型训练")
# 模型训练
model_fit = model.fit(train_seq_mat, train_y, batch_size=64, epochs=15,
validation_data=(val_seq_mat,val_y),
callbacks=[EarlyStopping(monitor='val_loss',min_delta=0.001)] #当val-loss不再提升时停止训练 0.0001
)
# 保存模型
model.save('cnn_model.h5')
del model # deletes the existing model
# 计算时间
elapsed = (time.clock() - start)
print("Time used:", elapsed)
print(model_fit.history)
else:
print("模型预测")
# 导入已经训练好的模型
model = load_model('cnn_model.h5')
#--------------------------------------第五步 预测及评估--------------------------------
# 对测试集进行预测
test_pre = model.predict(test_seq_mat)
# 评价预测效果,计算混淆矩阵
confm = metrics.confusion_matrix(np.argmax(test_y,axis=1),
np.argmax(test_pre,axis=1))
print(confm)
print(metrics.classification_report(np.argmax(test_y,axis=1),
np.argmax(test_pre,axis=1),
digits=4))
print("accuracy", metrics.accuracy_score(np.argmax(test_y, axis=1),
np.argmax(test_pre, axis=1)))
# 结果存储
f1 = open("cnn_test_pre.txt", "w")
for n in np.argmax(test_pre, axis=1):
f1.write(str(n) + "n")
f1.close()
f2 = open("cnn_test_y.txt", "w")
for n in np.argmax(test_y, axis=1):
f2.write(str(n) + "n")
f2.close()
plt.figure(figsize=(8,8))
sns.heatmap(confm.T, square=True, annot=True,
fmt='d', cbar=False, linewidths=.6,
cmap="YlGnBu")
plt.xlabel('True label',size = 14)
plt.ylabel('Predicted label', size = 14)
plt.xticks(np.arange(5)+0.5, Labname, size = 12)
plt.yticks(np.arange(5)+0.5, Labname, size = 12)
plt.savefig('cnn_result.png')
plt.show()
#--------------------------------------第六步 验证算法--------------------------------
# 使用tok对验证数据集重新预处理
val_seq = tok.texts_to_sequences(val_content)
# 将每个序列调整为相同的长度
val_seq_mat = sequence.pad_sequences(val_seq,maxlen=max_len)
# 对验证集进行预测
val_pre = model.predict(val_seq_mat)
print(metrics.classification_report(np.argmax(val_y,axis=1),
np.argmax(val_pre,axis=1),
digits=4))
print("accuracy", metrics.accuracy_score(np.argmax(val_y, axis=1),
np.argmax(val_pre, axis=1)))
# 计算时间
elapsed = (time.clock() - start)
print("Time used:", elapsed)
3.实验结果
no ... api
0 1 ... GetSystemInfo;HeapCreate;NtAllocateVirtualMemo...
1 2 ... GetSystemInfo;HeapCreate;NtAllocateVirtualMemo...
2 3 ... NtQueryValueKey;GetSystemTimeAsFileTime;HeapCr...
3 4 ... NtQueryValueKey;NtClose;NtAllocateVirtualMemor...
4 5 ... NtOpenFile;NtCreateSection;NtMapViewOfSection;...
[5 rows x 4 columns]
Label:
0 class1
1 class1
2 class1
3 class1
4 class1
5 class1
6 class1
7 class1
8 class1
9 class1
Name: apt, dtype: object
LabelEncoder
[[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]]
1241
['class1' 'class2' 'class3' 'class4' 'class5']
OneHotEncoder:
[[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0.]]
0 GetSystemInfo;HeapCreate;NtAllocateVirtualMemo...
1 GetSystemInfo;HeapCreate;NtAllocateVirtualMemo...
2 NtQueryValueKey;GetSystemTimeAsFileTime;HeapCr...
3 NtQueryValueKey;NtClose;NtAllocateVirtualMemor...
4 NtOpenFile;NtCreateSection;NtMapViewOfSection;...
Name: api, dtype: object
<class 'pandas.core.series.Series'>
<keras_preprocessing.text.Tokenizer object at 0x0000028E55D36B08>
('regqueryvalueexw', 1)
('ntclose', 2)
('ldrgetprocedureaddress', 3)
('regopenkeyexw', 4)
('regclosekey', 5)
('ntallocatevirtualmemory', 6)
('sendmessagew', 7)
('ntwritefile', 8)
('process32nextw', 9)
('ntdeviceiocontrolfile', 10)
===================
('getsysteminfo', 2651)
('heapcreate', 2996)
('ntallocatevirtualmemory', 115547)
('ntqueryvaluekey', 24120)
('getsystemtimeasfiletime', 52727)
('ldrgetdllhandle', 25135)
('ldrgetprocedureaddress', 199952)
('memcpy', 9008)
('setunhandledexceptionfilter', 1504)
('ntcreatefile', 43260)
(1241, 200)
(459, 200)
(650, 200)
[[ 3 135 3 3 2 21 3 3 4 3 96 3 3 4 96 4 96 20
22 20 3 6 6 23 128 129 3 103 23 56 2 103 23 20 3 23
3 3 3 3 4 1 5 23 12 131 12 20 3 10 2 10 2 20
3 4 5 27 3 10 2 6 10 2 3 10 2 10 2 3 10 2
10 2 10 2 10 2 10 2 3 10 2 10 2 10 2 10 2 3
3 3 36 4 3 23 20 3 5 207 34 6 6 6 11 11 6 11
6 6 6 6 6 6 6 6 6 11 6 6 11 6 11 6 11 6
6 11 6 34 3 141 3 140 3 3 141 34 6 2 21 4 96 4
96 4 96 23 3 3 12 131 12 10 2 10 2 4 5 27 10 2
6 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10
2 10 2 10 2 10 2 36 4 23 5 207 6 3 3 12 131 12
132 3]
[ 27 4 27 4 27 4 27 4 27 27 5 27 4 27 4 27 27 27
27 27 27 27 5 27 4 27 4 27 4 27 4 27 4 27 4 27
4 27 4 27 4 27 5 52 2 21 4 5 1 1 1 5 21 25
2 52 12 33 51 28 34 30 2 52 2 21 4 5 27 5 52 6
6 52 4 1 5 4 52 54 7 7 20 52 7 52 7 7 6 4
4 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 5
5 3 7 50 50 50 95 50 50 50 50 50 4 1 5 4 3 3
3 3 3 7 7 7 3 7 3 7 3 60 3 3 7 7 7 7
60 3 7 7 7 7 7 7 7 7 52 20 3 3 3 14 14 60
18 19 18 19 2 21 4 5 18 19 18 19 18 19 18 19 7 7
7 7 7 7 7 7 7 7 7 52 7 7 7 7 7 60 7 7
7 7]]
模型训练
Epoch 1/15
1/20 [>.............................] - ETA: 5s - loss: 1.5986 - accuracy: 0.2656
2/20 [==>...........................] - ETA: 1s - loss: 1.6050 - accuracy: 0.2266
3/20 [===>..........................] - ETA: 1s - loss: 1.5777 - accuracy: 0.2292
4/20 [=====>........................] - ETA: 2s - loss: 1.5701 - accuracy: 0.2500
5/20 [======>.......................] - ETA: 2s - loss: 1.5628 - accuracy: 0.2719
6/20 [========>.....................] - ETA: 3s - loss: 1.5439 - accuracy: 0.3125
7/20 [=========>....................] - ETA: 3s - loss: 1.5306 - accuracy: 0.3348
8/20 [===========>..................] - ETA: 3s - loss: 1.5162 - accuracy: 0.3535
9/20 [============>.................] - ETA: 3s - loss: 1.5020 - accuracy: 0.3698
10/20 [==============>...............] - ETA: 3s - loss: 1.4827 - accuracy: 0.3969
11/20 [===============>..............] - ETA: 3s - loss: 1.4759 - accuracy: 0.4020
12/20 [=================>............] - ETA: 3s - loss: 1.4734 - accuracy: 0.4036
13/20 [==================>...........] - ETA: 3s - loss: 1.4456 - accuracy: 0.4255
14/20 [====================>.........] - ETA: 3s - loss: 1.4322 - accuracy: 0.4353
15/20 [=====================>........] - ETA: 2s - loss: 1.4157 - accuracy: 0.4469
16/20 [=======================>......] - ETA: 2s - loss: 1.4093 - accuracy: 0.4482
17/20 [========================>.....] - ETA: 2s - loss: 1.4010 - accuracy: 0.4531
18/20 [==========================>...] - ETA: 1s - loss: 1.3920 - accuracy: 0.4601
19/20 [===========================>..] - ETA: 0s - loss: 1.3841 - accuracy: 0.4638
20/20 [==============================] - ETA: 0s - loss: 1.3763 - accuracy: 0.4674
20/20 [==============================] - 20s 1s/step - loss: 1.3763 - accuracy: 0.4674 - val_loss: 1.3056 - val_accuracy: 0.4837
Time used: 26.1328806
{'loss': [1.3762551546096802], 'accuracy': [0.467365026473999],
'val_loss': [1.305567979812622], 'val_accuracy': [0.48366013169288635]}
模型预测
[[ 40 14 11 1 44]
[ 16 57 10 0 17]
[ 6 30 61 0 23]
[ 12 20 15 47 36]
[ 11 14 19 0 146]]
precision recall f1-score support
0 0.4706 0.3636 0.4103 110
1 0.4222 0.5700 0.4851 100
2 0.5259 0.5083 0.5169 120
3 0.9792 0.3615 0.5281 130
4 0.5489 0.7684 0.6404 190
accuracy 0.5400 650
macro avg 0.5893 0.5144 0.5162 650
weighted avg 0.5980 0.5400 0.5323 650
accuracy 0.54
precision recall f1-score support
0 0.9086 0.4517 0.6034 352
1 0.5943 0.5888 0.5915 107
2 0.0000 0.0000 0.0000 0
3 0.0000 0.0000 0.0000 0
4 0.0000 0.0000 0.0000 0
accuracy 0.4837 459
macro avg 0.3006 0.2081 0.2390 459
weighted avg 0.8353 0.4837 0.6006 459
accuracy 0.48366013071895425
Time used: 14.170902800000002
三.基于BiLSTM的恶意家族检测
1.模型构建
# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2023-06-27
import pickle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
import tensorflow as tf
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.layers import Convolution1D, MaxPool1D, Flatten
from keras.optimizers import RMSprop
from keras.layers import Bidirectional
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.callbacks import EarlyStopping
from keras.models import load_model
from keras.models import Sequential
from keras.layers.merge import concatenate
import time
start = time.clock()
#---------------------------------------第一步 数据读取------------------------------------
# 读取测数据集
train_df = pd.read_csv("..\train_dataset.csv")
val_df = pd.read_csv("..\val_dataset.csv")
test_df = pd.read_csv("..\test_dataset.csv")
print(train_df.head())
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['KaiTi']
plt.rcParams['axes.unicode_minus'] = False
#---------------------------------第二步 OneHotEncoder()编码---------------------------------
# 对数据集的标签数据进行编码 (no apt md5 api)
train_y = train_df.apt
val_y = val_df.apt
test_y = test_df.apt
le = LabelEncoder()
train_y = le.fit_transform(train_y).reshape(-1,1)
val_y = le.transform(val_y).reshape(-1,1)
test_y = le.transform(test_y).reshape(-1,1)
Labname = le.classes_
# 对数据集的标签数据进行one-hot编码
ohe = OneHotEncoder()
train_y = ohe.fit_transform(train_y).toarray()
val_y = ohe.transform(val_y).toarray()
test_y = ohe.transform(test_y).toarray()
#-------------------------------第三步 使用Tokenizer对词组进行编码-------------------------------
# 使用Tokenizer对词组进行编码
max_words = 2000
max_len = 300
tok = Tokenizer(num_words=max_words)
# 提取token:api
train_value = train_df.api
train_content = [str(a) for a in train_value.tolist()]
val_value = val_df.api
val_content = [str(a) for a in val_value.tolist()]
test_value = test_df.api
test_content = [str(a) for a in test_value.tolist()]
tok.fit_on_texts(train_content)
print(tok)
# 保存训练好的Tokenizer和导入
with open('tok.pickle', 'wb') as handle:
pickle.dump(tok, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open('tok.pickle', 'rb') as handle:
tok = pickle.load(handle)
# 使用tok.texts_to_sequences()将数据转化为序列
train_seq = tok.texts_to_sequences(train_content)
val_seq = tok.texts_to_sequences(val_content)
test_seq = tok.texts_to_sequences(test_content)
# 将每个序列调整为相同的长度
train_seq_mat = sequence.pad_sequences(train_seq,maxlen=max_len)
val_seq_mat = sequence.pad_sequences(val_seq,maxlen=max_len)
test_seq_mat = sequence.pad_sequences(test_seq,maxlen=max_len)
#-------------------------------第四步 建立LSTM模型并训练-------------------------------
num_labels = 5
model = Sequential()
model.add(Embedding(max_words+1, 128, input_length=max_len))
#model.add(Bidirectional(LSTM(128, dropout=0.3, recurrent_dropout=0.1)))
model.add(Bidirectional(LSTM(128)))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(num_labels, activation='softmax'))
model.summary()
model.compile(loss="categorical_crossentropy",
optimizer='adam',
metrics=["accuracy"])
flag = "train"
if flag == "train":
print("模型训练")
# 模型训练
model_fit = model.fit(train_seq_mat, train_y, batch_size=64, epochs=15,
validation_data=(val_seq_mat,val_y),
callbacks=[EarlyStopping(monitor='val_loss',min_delta=0.0001)]
)
# 保存模型
model.save('bilstm_model.h5')
del model # deletes the existing model
# 计算时间
elapsed = (time.clock() - start)
print("Time used:", elapsed)
print(model_fit.history)
else:
print("模型预测")
model = load_model('bilstm_model.h5')
#--------------------------------------第五步 预测及评估--------------------------------
# 对测试集进行预测
test_pre = model.predict(test_seq_mat)
confm = metrics.confusion_matrix(np.argmax(test_y,axis=1),
np.argmax(test_pre,axis=1))
print(confm)
print(metrics.classification_report(np.argmax(test_y,axis=1),
np.argmax(test_pre,axis=1),
digits=4))
print("accuracy", metrics.accuracy_score(np.argmax(test_y, axis=1),
np.argmax(test_pre, axis=1)))
# 结果存储
f1 = open("bilstm_test_pre.txt", "w")
for n in np.argmax(test_pre, axis=1):
f1.write(str(n) + "n")
f1.close()
f2 = open("bilstm_test_y.txt", "w")
for n in np.argmax(test_y, axis=1):
f2.write(str(n) + "n")
f2.close()
plt.figure(figsize=(8,8))
sns.heatmap(confm.T, square=True, annot=True,
fmt='d', cbar=False, linewidths=.6,
cmap="YlGnBu")
plt.xlabel('True label',size = 14)
plt.ylabel('Predicted label', size = 14)
plt.xticks(np.arange(5)+0.5, Labname, size = 12)
plt.yticks(np.arange(5)+0.5, Labname, size = 12)
plt.savefig('bilstm_result.png')
plt.show()
#--------------------------------------第六步 验证算法--------------------------------
# 使用tok对验证数据集重新预处理
val_seq = tok.texts_to_sequences(val_content)
val_seq_mat = sequence.pad_sequences(val_seq,maxlen=max_len)
# 对验证集进行预测
val_pre = model.predict(val_seq_mat)
print(metrics.classification_report(np.argmax(val_y,axis=1),
np.argmax(val_pre,axis=1),
digits=4))
print("accuracy", metrics.accuracy_score(np.argmax(val_y, axis=1),
np.argmax(val_pre, axis=1)))
# 计算时间
elapsed = (time.clock() - start)
print("Time used:", elapsed)
2.实验结果
模型训练
Epoch 1/15
1/20 [>.............................] - ETA: 40s - loss: 1.6114 - accuracy: 0.2031
2/20 [==>...........................] - ETA: 10s - loss: 1.6055 - accuracy: 0.2969
3/20 [===>..........................] - ETA: 10s - loss: 1.6015 - accuracy: 0.3281
4/20 [=====>........................] - ETA: 10s - loss: 1.5931 - accuracy: 0.3477
5/20 [======>.......................] - ETA: 10s - loss: 1.5914 - accuracy: 0.3469
6/20 [========>.....................] - ETA: 10s - loss: 1.5827 - accuracy: 0.3698
7/20 [=========>....................] - ETA: 10s - loss: 1.5785 - accuracy: 0.3884
8/20 [===========>..................] - ETA: 10s - loss: 1.5673 - accuracy: 0.4121
9/20 [============>.................] - ETA: 9s - loss: 1.5610 - accuracy: 0.4149
10/20 [==============>...............] - ETA: 9s - loss: 1.5457 - accuracy: 0.4187
11/20 [===============>..............] - ETA: 8s - loss: 1.5297 - accuracy: 0.4148
12/20 [=================>............] - ETA: 8s - loss: 1.5338 - accuracy: 0.4128
13/20 [==================>...........] - ETA: 7s - loss: 1.5214 - accuracy: 0.4279
14/20 [====================>.........] - ETA: 6s - loss: 1.5176 - accuracy: 0.4286
15/20 [=====================>........] - ETA: 5s - loss: 1.5100 - accuracy: 0.4271
16/20 [=======================>......] - ETA: 4s - loss: 1.5065 - accuracy: 0.4258
17/20 [========================>.....] - ETA: 3s - loss: 1.5021 - accuracy: 0.4237
18/20 [==========================>...] - ETA: 2s - loss: 1.4921 - accuracy: 0.4288
19/20 [===========================>..] - ETA: 1s - loss: 1.4822 - accuracy: 0.4334
20/20 [==============================] - ETA: 0s - loss: 1.4825 - accuracy: 0.4327
20/20 [==============================] - 33s 2s/step - loss: 1.4825 - accuracy: 0.4327 - val_loss: 1.4187 - val_accuracy: 0.4074
Time used: 38.565846900000004
{'loss': [1.4825222492218018], 'accuracy': [0.4327155649662018],
'val_loss': [1.4187402725219727], 'val_accuracy': [0.40740740299224854]}
>>>
模型预测
[[36 18 37 1 18]
[14 46 34 0 6]
[ 8 29 73 0 10]
[16 29 14 45 26]
[47 15 33 0 95]]
precision recall f1-score support
0 0.2975 0.3273 0.3117 110
1 0.3358 0.4600 0.3882 100
2 0.3822 0.6083 0.4695 120
3 0.9783 0.3462 0.5114 130
4 0.6129 0.5000 0.5507 190
accuracy 0.4538 650
macro avg 0.5213 0.4484 0.4463 650
weighted avg 0.5474 0.4538 0.4624 650
accuracy 0.45384615384615384
precision recall f1-score support
0 0.9189 0.3864 0.5440 352
1 0.4766 0.4766 0.4766 107
2 0.0000 0.0000 0.0000 0
3 0.0000 0.0000 0.0000 0
4 0.0000 0.0000 0.0000 0
accuracy 0.4074 459
macro avg 0.2791 0.1726 0.2041 459
weighted avg 0.8158 0.4074 0.5283 459
accuracy 0.4074074074074074
Time used: 32.2772881
四.基于BiGRU的恶意家族检测
1.模型构建
# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2023-06-27
import pickle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
import tensorflow as tf
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
from keras.models import Model
from keras.layers import GRU, LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.layers import Convolution1D, MaxPool1D, Flatten
from keras.optimizers import RMSprop
from keras.layers import Bidirectional
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.callbacks import EarlyStopping
from keras.models import load_model
from keras.models import Sequential
from keras.layers.merge import concatenate
import time
start = time.clock()
#---------------------------------------第一步 数据读取------------------------------------
# 读取测数据集
train_df = pd.read_csv("..\train_dataset.csv")
val_df = pd.read_csv("..\val_dataset.csv")
test_df = pd.read_csv("..\test_dataset.csv")
print(train_df.head())
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['KaiTi']
plt.rcParams['axes.unicode_minus'] = False
#---------------------------------第二步 OneHotEncoder()编码---------------------------------
# 对数据集的标签数据进行编码 (no apt md5 api)
train_y = train_df.apt
val_y = val_df.apt
test_y = test_df.apt
le = LabelEncoder()
train_y = le.fit_transform(train_y).reshape(-1,1)
val_y = le.transform(val_y).reshape(-1,1)
test_y = le.transform(test_y).reshape(-1,1)
Labname = le.classes_
# 对数据集的标签数据进行one-hot编码
ohe = OneHotEncoder()
train_y = ohe.fit_transform(train_y).toarray()
val_y = ohe.transform(val_y).toarray()
test_y = ohe.transform(test_y).toarray()
#-------------------------------第三步 使用Tokenizer对词组进行编码-------------------------------
# 使用Tokenizer对词组进行编码
max_words = 2000
max_len = 300
tok = Tokenizer(num_words=max_words)
# 提取token:api
train_value = train_df.api
train_content = [str(a) for a in train_value.tolist()]
val_value = val_df.api
val_content = [str(a) for a in val_value.tolist()]
test_value = test_df.api
test_content = [str(a) for a in test_value.tolist()]
tok.fit_on_texts(train_content)
print(tok)
# 保存训练好的Tokenizer和导入
with open('tok.pickle', 'wb') as handle:
pickle.dump(tok, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open('tok.pickle', 'rb') as handle:
tok = pickle.load(handle)
# 使用tok.texts_to_sequences()将数据转化为序列
train_seq = tok.texts_to_sequences(train_content)
val_seq = tok.texts_to_sequences(val_content)
test_seq = tok.texts_to_sequences(test_content)
# 将每个序列调整为相同的长度
train_seq_mat = sequence.pad_sequences(train_seq,maxlen=max_len)
val_seq_mat = sequence.pad_sequences(val_seq,maxlen=max_len)
test_seq_mat = sequence.pad_sequences(test_seq,maxlen=max_len)
#-------------------------------第四步 建立GRU模型并训练-------------------------------
num_labels = 5
model = Sequential()
model.add(Embedding(max_words+1, 256, input_length=max_len))
#model.add(Bidirectional(GRU(128, dropout=0.2, recurrent_dropout=0.1)))
model.add(Bidirectional(GRU(256)))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(num_labels, activation='softmax'))
model.summary()
model.compile(loss="categorical_crossentropy",
optimizer='adam',
metrics=["accuracy"])
flag = "train"
if flag == "train":
print("模型训练")
# 模型训练
model_fit = model.fit(train_seq_mat, train_y, batch_size=64, epochs=15,
validation_data=(val_seq_mat,val_y),
callbacks=[EarlyStopping(monitor='val_loss',min_delta=0.005)]
)
# 保存模型
model.save('gru_model.h5')
del model # deletes the existing model
# 计算时间
elapsed = (time.clock() - start)
print("Time used:", elapsed)
print(model_fit.history)
else:
print("模型预测")
model = load_model('gru_model.h5')
#--------------------------------------第五步 预测及评估--------------------------------
# 对测试集进行预测
test_pre = model.predict(test_seq_mat)
confm = metrics.confusion_matrix(np.argmax(test_y,axis=1),
np.argmax(test_pre,axis=1))
print(confm)
print(metrics.classification_report(np.argmax(test_y,axis=1),
np.argmax(test_pre,axis=1),
digits=4))
print("accuracy", metrics.accuracy_score(np.argmax(test_y, axis=1),
np.argmax(test_pre, axis=1)))
# 结果存储
f1 = open("gru_test_pre.txt", "w")
for n in np.argmax(test_pre, axis=1):
f1.write(str(n) + "n")
f1.close()
f2 = open("gru_test_y.txt", "w")
for n in np.argmax(test_y, axis=1):
f2.write(str(n) + "n")
f2.close()
plt.figure(figsize=(8,8))
sns.heatmap(confm.T, square=True, annot=True,
fmt='d', cbar=False, linewidths=.6,
cmap="YlGnBu")
plt.xlabel('True label',size = 14)
plt.ylabel('Predicted label', size = 14)
plt.xticks(np.arange(5)+0.5, Labname, size = 12)
plt.yticks(np.arange(5)+0.5, Labname, size = 12)
plt.savefig('gru_result.png')
plt.show()
#--------------------------------------第六步 验证算法--------------------------------
# 使用tok对验证数据集重新预处理
val_seq = tok.texts_to_sequences(val_content)
val_seq_mat = sequence.pad_sequences(val_seq,maxlen=max_len)
# 对验证集进行预测
val_pre = model.predict(val_seq_mat)
print(metrics.classification_report(np.argmax(val_y,axis=1),
np.argmax(val_pre,axis=1),
digits=4))
print("accuracy", metrics.accuracy_score(np.argmax(val_y, axis=1),
np.argmax(val_pre, axis=1)))
# 计算时间
elapsed = (time.clock() - start)
print("Time used:", elapsed)
2.实验结果
模型训练
Epoch 1/15
1/20 [>.............................] - ETA: 47s - loss: 1.6123 - accuracy: 0.1875
2/20 [==>...........................] - ETA: 18s - loss: 1.6025 - accuracy: 0.2656
3/20 [===>..........................] - ETA: 18s - loss: 1.5904 - accuracy: 0.3333
4/20 [=====>........................] - ETA: 18s - loss: 1.5728 - accuracy: 0.3867
5/20 [======>.......................] - ETA: 17s - loss: 1.5639 - accuracy: 0.4094
6/20 [========>.....................] - ETA: 17s - loss: 1.5488 - accuracy: 0.4375
7/20 [=========>....................] - ETA: 16s - loss: 1.5375 - accuracy: 0.4397
8/20 [===========>..................] - ETA: 16s - loss: 1.5232 - accuracy: 0.4434
9/20 [============>.................] - ETA: 15s - loss: 1.5102 - accuracy: 0.4358
10/20 [==============>...............] - ETA: 14s - loss: 1.5014 - accuracy: 0.4250
11/20 [===============>..............] - ETA: 13s - loss: 1.5053 - accuracy: 0.4233
12/20 [=================>............] - ETA: 12s - loss: 1.5022 - accuracy: 0.4232
13/20 [==================>...........] - ETA: 11s - loss: 1.4913 - accuracy: 0.4279
14/20 [====================>.........] - ETA: 9s - loss: 1.4912 - accuracy: 0.4286
15/20 [=====================>........] - ETA: 8s - loss: 1.4841 - accuracy: 0.4365
16/20 [=======================>......] - ETA: 7s - loss: 1.4720 - accuracy: 0.4404
17/20 [========================>.....] - ETA: 5s - loss: 1.4669 - accuracy: 0.4375
18/20 [==========================>...] - ETA: 3s - loss: 1.4636 - accuracy: 0.4349
19/20 [===========================>..] - ETA: 1s - loss: 1.4544 - accuracy: 0.4383
20/20 [==============================] - ETA: 0s - loss: 1.4509 - accuracy: 0.4400
20/20 [==============================] - 44s 2s/step - loss: 1.4509 - accuracy: 0.4400 - val_loss: 1.3812 - val_accuracy: 0.3660
Time used: 49.7057119
{'loss': [1.4508591890335083], 'accuracy': [0.4399677813053131],
'val_loss': [1.381193995475769], 'val_accuracy': [0.3660130798816681]}
模型预测
[[ 30 8 9 17 46]
[ 13 50 9 13 15]
[ 10 4 58 29 19]
[ 11 8 8 73 30]
[ 25 3 23 14 125]]
precision recall f1-score support
0 0.3371 0.2727 0.3015 110
1 0.6849 0.5000 0.5780 100
2 0.5421 0.4833 0.5110 120
3 0.5000 0.5615 0.5290 130
4 0.5319 0.6579 0.5882 190
accuracy 0.5169 650
macro avg 0.5192 0.4951 0.5016 650
weighted avg 0.5180 0.5169 0.5120 650
accuracy 0.5169230769230769
precision recall f1-score support
0 0.8960 0.3182 0.4696 352
1 0.7273 0.5234 0.6087 107
2 0.0000 0.0000 0.0000 0
3 0.0000 0.0000 0.0000 0
4 0.0000 0.0000 0.0000 0
accuracy 0.3660 459
macro avg 0.3247 0.1683 0.2157 459
weighted avg 0.8567 0.3660 0.5020 459
accuracy 0.3660130718954248
Time used: 60.106339399999996
五.基于CNN+BiLSTM和注意力的恶意家族检测
1.模型构建
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
inputs (InputLayer) [(None, 100)] 0
__________________________________________________________________________________________________
embedding (Embedding) (None, 100, 256) 256256 inputs[0][0]
__________________________________________________________________________________________________
conv1d (Conv1D) (None, 100, 256) 196864 embedding[0][0]
__________________________________________________________________________________________________
conv1d_1 (Conv1D) (None, 100, 256) 262400 embedding[0][0]
__________________________________________________________________________________________________
conv1d_2 (Conv1D) (None, 100, 256) 327936 embedding[0][0]
__________________________________________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 25, 256) 0 conv1d[0][0]
__________________________________________________________________________________________________
max_pooling1d_1 (MaxPooling1D) (None, 25, 256) 0 conv1d_1[0][0]
__________________________________________________________________________________________________
max_pooling1d_2 (MaxPooling1D) (None, 25, 256) 0 conv1d_2[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 25, 768) 0 max_pooling1d[0][0]
max_pooling1d_1[0][0]
max_pooling1d_2[0][0]
__________________________________________________________________________________________________
bidirectional (Bidirectional) (None, 25, 256) 918528 concatenate[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 25, 128) 32896 bidirectional[0][0]
__________________________________________________________________________________________________
dropout (Dropout) (None, 25, 128) 0 dense[0][0]
__________________________________________________________________________________________________
attention_layer (AttentionLayer (None, 128) 6500 dropout[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 5) 645 attention_layer[0][0]
==================================================================================================
Total params: 2,002,025
Trainable params: 1,745,769
Non-trainable params: 256,256
# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2023-06-27
import pickle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from sklearn import metrics
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
from keras.models import Model
from keras.layers import LSTM, GRU, Activation, Dense, Dropout, Input, Embedding
from keras.layers import Convolution1D, MaxPool1D, Flatten
from keras.optimizers import RMSprop
from keras.layers import Bidirectional
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.callbacks import EarlyStopping
from keras.models import load_model
from keras.models import Sequential
from keras.layers.merge import concatenate
import time
start = time.clock()
#---------------------------------------第一步 数据读取------------------------------------
# 读取测数据集
train_df = pd.read_csv("..\train_dataset.csv")
val_df = pd.read_csv("..\val_dataset.csv")
test_df = pd.read_csv("..\test_dataset.csv")
print(train_df.head())
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['KaiTi']
plt.rcParams['axes.unicode_minus'] = False
#---------------------------------第二步 OneHotEncoder()编码---------------------------------
# 对数据集的标签数据进行编码 (no apt md5 api)
train_y = train_df.apt
val_y = val_df.apt
test_y = test_df.apt
le = LabelEncoder()
train_y = le.fit_transform(train_y).reshape(-1,1)
val_y = le.transform(val_y).reshape(-1,1)
test_y = le.transform(test_y).reshape(-1,1)
Labname = le.classes_
# 对数据集的标签数据进行one-hot编码
ohe = OneHotEncoder()
train_y = ohe.fit_transform(train_y).toarray()
val_y = ohe.transform(val_y).toarray()
test_y = ohe.transform(test_y).toarray()
#-------------------------------第三步 使用Tokenizer对词组进行编码-------------------------------
# 使用Tokenizer对词组进行编码
max_words = 1000
max_len = 100
tok = Tokenizer(num_words=max_words)
# 提取token:api
train_value = train_df.api
train_content = [str(a) for a in train_value.tolist()]
val_value = val_df.api
val_content = [str(a) for a in val_value.tolist()]
test_value = test_df.api
test_content = [str(a) for a in test_value.tolist()]
tok.fit_on_texts(train_content)
print(tok)
# 保存训练好的Tokenizer和导入
with open('tok.pickle', 'wb') as handle:
pickle.dump(tok, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open('tok.pickle', 'rb') as handle:
tok = pickle.load(handle)
# 使用tok.texts_to_sequences()将数据转化为序列
train_seq = tok.texts_to_sequences(train_content)
val_seq = tok.texts_to_sequences(val_content)
test_seq = tok.texts_to_sequences(test_content)
# 将每个序列调整为相同的长度
train_seq_mat = sequence.pad_sequences(train_seq,maxlen=max_len)
val_seq_mat = sequence.pad_sequences(val_seq,maxlen=max_len)
test_seq_mat = sequence.pad_sequences(test_seq,maxlen=max_len)
#-------------------------------第四步 建立Attention机制-------------------------------
"""
由于Keras目前还没有现成的Attention层可以直接使用,我们需要自己来构建一个新的层函数。
Keras自定义的函数主要分为四个部分,分别是:
init:初始化一些需要的参数
bulid:具体来定义权重是怎么样的
call:核心部分,定义向量是如何进行运算的
compute_output_shape:定义该层输出的大小
推荐文章 https://blog.csdn.net/huanghaocs/article/details/95752379
推荐文章 https://zhuanlan.zhihu.com/p/29201491
"""
# Hierarchical Model with Attention
from keras import initializers
from keras import constraints
from keras import activations
from keras import regularizers
from keras import backend as K
from keras.engine.topology import Layer
K.clear_session()
class AttentionLayer(Layer):
def __init__(self, attention_size=None, **kwargs):
self.attention_size = attention_size
super(AttentionLayer, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config['attention_size'] = self.attention_size
return config
def build(self, input_shape):
assert len(input_shape) == 3
self.time_steps = input_shape[1]
hidden_size = input_shape[2]
if self.attention_size is None:
self.attention_size = hidden_size
self.W = self.add_weight(name='att_weight', shape=(hidden_size, self.attention_size),
initializer='uniform', trainable=True)
self.b = self.add_weight(name='att_bias', shape=(self.attention_size,),
initializer='uniform', trainable=True)
self.V = self.add_weight(name='att_var', shape=(self.attention_size,),
initializer='uniform', trainable=True)
super(AttentionLayer, self).build(input_shape)
#解决方法: Attention The graph tensor has name: model/attention_layer/Reshape:0
#https://blog.csdn.net/weixin_54227557/article/details/129898614
def call(self, inputs):
#self.V = K.reshape(self.V, (-1, 1))
V = K.reshape(self.V, (-1, 1))
H = K.tanh(K.dot(inputs, self.W) + self.b)
#score = K.softmax(K.dot(H, self.V), axis=1)
score = K.softmax(K.dot(H, V), axis=1)
outputs = K.sum(score * inputs, axis=1)
return outputs
def compute_output_shape(self, input_shape):
return input_shape[0], input_shape[2]
#-------------------------------第五步 建立Attention+CNN模型并训练-------------------------------
# 构建TextCNN模型
num_labels = 5
inputs = Input(name='inputs',shape=[max_len], dtype='float64')
layer = Embedding(max_words+1, 256, input_length=max_len, trainable=False)(inputs)
cnn1 = Convolution1D(256, 3, padding='same', strides = 1, activation='relu')(layer)
cnn1 = MaxPool1D(pool_size=4)(cnn1)
cnn2 = Convolution1D(256, 4, padding='same', strides = 1, activation='relu')(layer)
cnn2 = MaxPool1D(pool_size=4)(cnn2)
cnn3 = Convolution1D(256, 5, padding='same', strides = 1, activation='relu')(layer)
cnn3 = MaxPool1D(pool_size=4)(cnn3)
# 合并三个模型的输出向量
cnn = concatenate([cnn1,cnn2,cnn3], axis=-1)
# BiLSTM+Attention
#bilstm = Bidirectional(LSTM(100, dropout=0.2, recurrent_dropout=0.1, return_sequences=True))(cnn)
bilstm = Bidirectional(LSTM(128, return_sequences=True))(cnn) #参数保持维度3
layer = Dense(128, activation='relu')(bilstm)
layer = Dropout(0.3)(layer)
attention = AttentionLayer(attention_size=50)(layer)
output = Dense(num_labels, activation='softmax')(attention)
model = Model(inputs=inputs, outputs=output)
model.summary()
model.compile(loss="categorical_crossentropy",
optimizer='adam',
metrics=["accuracy"])
flag = "test"
if flag == "train":
print("模型训练")
# 模型训练
model_fit = model.fit(train_seq_mat, train_y, batch_size=128, epochs=15,
validation_data=(val_seq_mat,val_y),
callbacks=[EarlyStopping(monitor='val_loss',min_delta=0.0005)]
)
# 保存模型
model.save('cnn_bilstm_model.h5')
del model # deletes the existing model
#计算时间
elapsed = (time.clock() - start)
print("Time used:", elapsed)
print(model_fit.history)
else:
print("模型预测")
model = load_model('cnn_bilstm_model.h5', custom_objects={'AttentionLayer': AttentionLayer(50)}, compile=False)
#--------------------------------------第六步 预测及评估--------------------------------
# 对测试集进行预测
test_pre = model.predict(test_seq_mat)
confm = metrics.confusion_matrix(np.argmax(test_y,axis=1),np.argmax(test_pre,axis=1))
print(confm)
print(metrics.classification_report(np.argmax(test_y,axis=1),
np.argmax(test_pre,axis=1),
digits=4))
print("accuracy",metrics.accuracy_score(np.argmax(test_y,axis=1),
np.argmax(test_pre,axis=1)))
# 结果存储
f1 = open("cnn_bilstm_test_pre.txt", "w")
for n in np.argmax(test_pre, axis=1):
f1.write(str(n) + "n")
f1.close()
f2 = open("cnn_bilstm_test_y.txt", "w")
for n in np.argmax(test_y, axis=1):
f2.write(str(n) + "n")
f2.close()
plt.figure(figsize=(8,8))
sns.heatmap(confm.T, square=True, annot=True,
fmt='d', cbar=False, linewidths=.6,
cmap="YlGnBu")
plt.xlabel('True label',size = 14)
plt.ylabel('Predicted label', size = 14)
plt.xticks(np.arange(5)+0.5, Labname, size = 12)
plt.yticks(np.arange(5)+0.5, Labname, size = 12)
plt.savefig('cnn_bilstm_result.png')
plt.show()
#--------------------------------------第七步 验证算法--------------------------------
# 使用tok对验证数据集重新预处理,并使用训练好的模型进行预测
val_seq = tok.texts_to_sequences(val_content)
val_seq_mat = sequence.pad_sequences(val_seq,maxlen=max_len)
# 对验证集进行预测
val_pre = model.predict(val_seq_mat)
print(metrics.classification_report(np.argmax(val_y, axis=1),
np.argmax(val_pre, axis=1),
digits=4))
print("accuracy", metrics.accuracy_score(np.argmax(val_y, axis=1),
np.argmax(val_pre, axis=1)))
# 计算时间
elapsed = (time.clock() - start)
print("Time used:", elapsed)
2.实验结果
模型训练
Epoch 1/15
1/10 [==>...........................] - ETA: 18s - loss: 1.6074 - accuracy: 0.2188
2/10 [=====>........................] - ETA: 2s - loss: 1.5996 - accuracy: 0.2383
3/10 [========>.....................] - ETA: 2s - loss: 1.5903 - accuracy: 0.2500
4/10 [===========>..................] - ETA: 2s - loss: 1.5665 - accuracy: 0.2793
5/10 [==============>...............] - ETA: 2s - loss: 1.5552 - accuracy: 0.2750
6/10 [=================>............] - ETA: 1s - loss: 1.5346 - accuracy: 0.2930
7/10 [====================>.........] - ETA: 1s - loss: 1.5229 - accuracy: 0.3103
8/10 [=======================>......] - ETA: 1s - loss: 1.5208 - accuracy: 0.3135
9/10 [==========================>...] - ETA: 0s - loss: 1.5132 - accuracy: 0.3281
10/10 [==============================] - ETA: 0s - loss: 1.5046 - accuracy: 0.3400
10/10 [==============================] - 9s 728ms/step - loss: 1.5046 - accuracy: 0.3400 - val_loss: 1.4659 - val_accuracy: 0.5599
Time used: 13.8141568
{'loss': [1.5045626163482666], 'accuracy': [0.34004834294319153],
'val_loss': [1.4658586978912354], 'val_accuracy': [0.5599128603935242]}
模型预测
[[ 56 13 1 0 40]
[ 31 53 0 0 16]
[ 54 47 3 1 15]
[ 27 14 1 51 37]
[ 39 16 8 2 125]]
precision recall f1-score support
0 0.2705 0.5091 0.3533 110
1 0.3706 0.5300 0.4362 100
2 0.2308 0.0250 0.0451 120
3 0.9444 0.3923 0.5543 130
4 0.5365 0.6579 0.5910 190
accuracy 0.4431 650
macro avg 0.4706 0.4229 0.3960 650
weighted avg 0.4911 0.4431 0.4189 650
accuracy 0.4430769230769231
havior.
precision recall f1-score support
0 0.8571 0.5625 0.6792 352
1 0.6344 0.5514 0.5900 107
2 0.0000 0.0000 0.0000 0
4 0.0000 0.0000 0.0000 0
accuracy 0.5599 459
macro avg 0.3729 0.2785 0.3173 459
weighted avg 0.8052 0.5599 0.6584 459
accuracy 0.5599128540305011
Time used: 23.0178675
六.总结
免责声明:文章中涉及的程序(方法)可能带有攻击性,仅供安全研究与教学之用,读者将其信息做其他用途,由读者承担全部法律及连带责任,本站不承担任何法律及连带责任;如有问题可邮件联系(建议使用企业邮箱或有效邮箱,避免邮件被拦截,联系方式见首页),望知悉。
- 左青龙
- 微信扫一扫
-
- 右白虎
- 微信扫一扫
-
评论