一、概述
二、基于视频的人员身份识别技术主要包含方向
图 1基于外观的步态识别方法示意图
图 2 GaitSet特征提取示意图
图 3 换装行人重识别方法分类示意图
图 4 小股人群重识别分类示意图
图 5 跨模态人员识别研究热点时间轴
三、结语
参考文献
[1] 中国公共安全, 高.J.: ‘视频结构化技术视频数据的"赋能者"’, 2018, (5), pp. 4
[2] Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., and Yagi, Y.J.I.: ‘GEINet: View-invariant gait recognition using a convolutional neural network’, 2016
[3] Zhang, Z., Tran, L., Yin, X., Atoum, Y., and Wang, N.J.I.: ‘Gait Recognition via Disentangled Representation Learning’, 2019
[4] Fan, C., Peng, Y., Cao, C., Liu, X., and He, Z.J.I.: ‘GaitPart: Temporal Part-Based Model for Gait Recognition’, 2020
[5] 罗浩, 姜伟, 范星, and 自动化学报, 张.J.: ‘基于深度学习的行人重识别研究进展’, 2019, 45, (11), pp. 18
[6] Hong, P., Wu, T., Wu, A., Han, X., and Zheng, W.S.J.I.: ‘Fine-Grained Shape-Appearance Mutual Learning for Cloth-Changing Person Re-Identification’, 2021
[7] Jia, X., Zhong, X., Ye, M., Liu, W., Huang, W., and Zhao, S.: ‘Patching Your Clothes: Semantic-Aware Learning for Cloth-Changed Person Re-Identification’, in Editor (Ed.)^(Eds.): ‘Book Patching Your Clothes: Semantic-Aware Learning for Cloth-Changed Person Re-Identification’ (2022, edn.), pp.
[8] Chen, L., Yang, H., Xu, Q., and Gao, Z.J.N.: ‘Harmonious attention network for person re-identification via complementarity between groups and individuals’, 2020
[9] Algashaam, F., Nguyen, K., Banks, J., Chandran, V., Do, T.A., Alkanhal, M.J.M.V., and Applications: ‘Hierarchical fusion network for periocular and iris by neural network approximation and sparse autoencoder’, 2021, 32, (1), pp. 1-10
[10] San-Biagio, M., Crocco, M., Cristani, M., Martelli, S., and Murino, V.: ‘Low-level multimodal integration on Riemannian manifolds for automatic pedestrian detection’, in Editor (Ed.)^(Eds.): ‘Book Low-level multimodal integration on Riemannian manifolds for automatic pedestrian detection’ (2012, edn.), pp.
中国保密协会
科学技术分会
长按扫码关注我们
作者:陈琳 中国科学院信息工程研究所
责编:蔡北平
2022年精彩文章TOP5回顾
近期精彩文章回顾
原文始发于微信公众号(中国保密协会科学技术分会):视频分析技术在人员身份识别任务中的应用
- 左青龙
- 微信扫一扫
-
- 右白虎
- 微信扫一扫
-
评论