微信小程序逆向保姆级教程

admin 2024年12月17日20:21:51评论227 views字数 30191阅读100分38秒阅读模式

微信小程序逆向保姆级教程

免责声明
由于传播、利用本公众号听风安全所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,公众号听风安全及作者不为承担任何责任,一旦造成后果请自行承担!如有侵权烦请告知,我们会立即删除并致歉。谢谢!

公众号现在只对常读和星标的公众号才展示大图推送,

建议大家把听风安全设为星标,否则可能就看不到啦!

----------------------------------------------------------------------

0x00 前言

这两周由于挖众测+发烧,导致一直没顾得上更新,今天就来更一篇微信小程序逆向保姆级教程。

注:本文不涉及python脚本自动化加解密。

0x01 工具介绍

先介绍下逆向微信小程序必不可缺的两个工具,在这里感谢下开源的开发者们。

1.wxapkg

https://github.com/wux1an/wxapkg/

微信小程序逆向保姆级教程

一般来说,我们打开小程序后,小程序会打包并以wxapkg为后缀保存到本地(其他情况另说)。

微信小程序逆向保姆级教程

所以我们可以使用wxapkg工具来帮助我们还原小程序原始源码文件。

2.WeChatOpenDevTools-Python

https://github.com/JaveleyQAQ/WeChatOpenDevTools-Python

微信小程序逆向保姆级教程

DevTools可以帮助我们在小程序或微信内置浏览器中强制开启开发者工具。

0x02 逆向实战

如下图所示,该小程序的请求包数据和返回包数据都是加密的:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

该小程序还有自己定义的一些请求头,本文这里不作逆向,只对请求体和返回体数据进行加解密逆向。

使用wxapkg解包小程序,查看小程序文件存放路径:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

将路径复制下来,使用wxapkg扫描路径:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

解包完成后源码会放到工具根目录:

微信小程序逆向保姆级教程

vscode打开:

微信小程序逆向保姆级教程

现在即可查看小程序源码,搜索encrypt/decrypt:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

这两个单词一般会拿来作加密/解密函数名和变量名,不过本文在这里只是简单演示一下解包,后文主要是使用DevTools逆向。

需要注意的是,不是所有微信客户端版本都能使用DevTools,作者在README.md声明过可使用DevTools的微信客户端版本:

微信小程序逆向保姆级教程

读者可以在https://github.com/tom-snow/wechat-windows-versions/releases查找可使用DevTools的微信客户端版本。

打开DevTools

微信小程序逆向保姆级教程

小程序查看:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

成功打开开发者工具。

我们先从解密开始,全局搜索关键字decrypt:

微信小程序逆向保姆级教程

将可疑的函数打上断点调试,看看能不能找到解密函数,在我尝试了过后发现全都没有被调用过,于是我转而去刚刚解包过的源码中查找decrypt:

微信小程序逆向保姆级教程

开发者工具中搜索decrypt: function(r, n, i) {关键字打上断点(单独查找decrypt是搜不到这个函数的,只有这样搜才可以,这可能是开发者工具的一些机制,所以我极其推荐读者将wxapkg和DevTools搭配使用):

微信小程序逆向保姆级教程

任意点击一个小程序内容:

微信小程序逆向保姆级教程

看下堆栈:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

很明显mt就是解密函数,扒下来:

微信小程序逆向保姆级教程

调用一下:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

st未定义,但是我们可以很容易地猜到st就是开发将CryptoJS简化后的的命名,可以看一下CryptoJS的官方文档(https://cryptojs.gitbook.io/docs):

微信小程序逆向保姆级教程

简化命名:

微信小程序逆向保姆级教程

重新调用:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

Ot未定义,看一下Ot("aesKey")是什么:

微信小程序逆向保姆级教程

我又重新进行了几次调用,发现这个参数貌似是写死的,重新进入下小程序看一看:

   微信小程序逆向保姆级教程

看来不是写死的,但是不退出小程序就不会更改,所以暂时不管这个参数的生成过程,先拿过来用着,重新调用下:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

iv偏移量是通过lt参数定义的,找一下lt,发现就在解密函数的上面:

微信小程序逆向保姆级教程

看了一下应该是没有需要用补的了,将加密数据拿过来尝试解密:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

解密成功。

当然了,加密函数也得写上,同样的方法查找加密方法:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

拿出来补充并调用:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

q0kcUFJHRNMZDOWXR69HBiADKcfHDaKGRbclXke9ekMU0XlMnxyuG0xA60iKOxTwMJaH9xiG+TvwbNq6SMi7MMRWLyeuXswpuwKh9/sZQnICJtC766o6CPEJ2PpxFHSOiaGdkfz+kj/v+ZgaEJUqCbojOFpjcWV8JzfZaeDksEVOrnN/vZy2icoNHvup7WoI3d8DxFF6aJjqeUuylzyhdrdb/VltoLwXwrJxUJsbTsS6ZZfrluWo9PwZQnP8eXoi0Z1qOwqJG8cdVeVq5rurbUWnxH8FoXOT6Y6e48OoSh1kVvQWmWno9j6wUw65nHCybDcHbtGIc8rIcuXJfZ53WC9bMGIVoU+zuG2NxFFHuZbZNjyn8tDh4e1HFzGhpaMRSLQwv3Fn9FuUUdwhCFIzQLE7SZo+029LjMycHbhWGIqz1UvldBi0PvM2cnnW5gHg59x/2SwgUpu7KlodO0YVvDXERXMoW6PNYfpUTQ1RxA3q21XZjF4KbcPUgjuuqlB/KiCrWGKWQSZEHRm6hK6H2rpLFCEca4/1kspXbcupWCJWFtSgU0csfy+AzO9EHD3VyaYpyukDbDnBk4Oq2J3lANf0d1fBKvkDmwElPjgTy+wNSTtLcTJb/kPGTFUPuX9sO+nW4KX9IHLaTPZ3jqN8p5QApvQXCbdv5F6fDaxeC4SX36CqJOxU0pzBUvrcHFOsc+2RV4jk/S70qA1x393GRW9qchoWMUKyzPEEfwLXTpVo6BOJBWHTOU1BPaupvbyIeOfNhSNy/hxC/3laclTSRpHcT8uwzaPTZnTbSDURW9fgbPb5POqYwMbO4ID3m+c+VHbffz+fvo72nl7UsyB3rc8AIOttpNz0XVbeRJwfLcYloLRqbo9OG39o1pDazo+wiLVuZN8D0D3v5oMqyi3ZgrbH+OTGynBTuTvtxi6/PEERVrnmWHRVvPGz9xGKLBxwQdcOEs5PkjF2HvUvk9bhsHJVBaNRMIau0q2VrPn9eDse5Ffscp97PWubyKFhuucThT7vhvQu33tdAR/xSVoR4iGpVhbzezHYs+NhGS9ckHZw4KRy7SpNjRqsi6OyHRNnk++AXv4V581pB3YJEGFl9uVwl+s6DUKV2Yib5ngUYp4b2AHjt29T57eD+NZsbOW9VXoKK0+L2vz223t7q/wmgp/+Duu4SUAFbWoy/bhfX10TGOgaovwsqj7Un6/evIGHhf+0bbTwfb9zCJt4gs6BawFbpoCpxwYBqApPIh5efplYY6jnTV9ALySA+73miYbAPpD/9/BQXQ5tq1Z8IBVeoVk+jz4hwlCvFShVVwSAyZHvYauaYghGnnQeP58VpbhrLku0E/LFDlyuOBQpf9gQlsSdINVfdYJkm+44W4JHBEg3YmKhMkg6OABBh55ActYjFv5y/qWMrciUB32UYqVYJvuUQwLZcqHJcS6CaGgP20jPUHVJ4psQfOf79S+pc3X6XEyT8+FkjtkZmAdPE3ictgZ5myKfvjiB02JCwYfUCOTVfE/0HB7ShUoGyk55jzOrOhRX3oH6ooBXLi2AzQyBjh5j2qly1Cg2rjNeGW9DnhEwavY3mDl3PJpTGLffsmADIWfwwwZRnsgX5OPromKyzhYDCijoE6yhcUMmV1ZLN3tiWjPtulJslwrKDF82ZxlYW7ZHAKR0Q09TMPw+075sIKMWEPoe02mstH23+M+eIKeUu6c7bHsdyNPL9LqryOaPUwcDozKf1bYeBiOZT9/xDMYOzf/9cXBB8hC5TLqnSfdxpHJOT09XR1k1/KBkInCDa+pZP1+bOnt4Lz0LdPhyHxHEgguFZUIdNmA+Ys7D2Sc8zdJvdbm8zLSRc5+PqCSoGngM/hpdXLCCcZ2VnoBwJIgKJezOpzbtsIlQ7CUys03boGLqWfDCXRFyAjYxX4ovPh5HQCJxCUa+fEX5COOmuMCC+eKsk5oINRd8rcKNWvvrbgUYDx+XlXr3rfW8lFLEJ1yhxDOXLhtppXhLnxbWfqohy6p4DLqcLRvXdRnEd0AXaeYxfa/G2BcpzET1N/bmbtH/iCo2xBgJcJpKiA/za9Qy/9bNsOLDgkkQg6+h9Cy1t3nyuRuIhHNAzNpyaz25DecObM3Y6ZdzXe6J5hMGTYjXIMbIhGjhHQH6in5fQMKxGNujtoS1wEbPrWFNSAeYcm1pMyQvqiI2SBOzAetGAuFSSHgnA4i3E5A/VobhQI84p+t6e58y8BRnCUMO1e3tz1scbOSHg0ErKPtvsHGrKTLiIvYk08CmQudHDrcAxmJn5bv1rgh30OCq8oGlYSD+GoUSxE68eA601O9QnYXGR8WWbZP6l8T8o7mlftHbFY34CM3TuC2eoFM+/l2RylWJllN+C22aldrJVuKN4HyrDn7asoPoQf7//EOXmunfMVXLjeIg5x6yKlBIqAQ4GW/LxyP6MIq5nAfK3KOk6jhq4+Se3ZZ4u8/anLZz/fG/B7xhfynVrrSXHmd5uhFjJlG6km/KbiEUYnv0bDlyWnH+fkU26HJdrMiTQmw3MjqxL4iOAWR+EH+/xPOSpCWTUKVYzv64gDjUBQOF1bvQkZyAtvlwr1I/rciXMgLbrgiBPwm3tTLu5wvhbpoE2x4PS+d41l19U5M84/Q5DJeWPyOEndw1DvmbPFH+VWdFeGmVTay4grXwqeIIJWtBASrQ+Zy25g+8oyNLjfDjCoep6wyCJYUc30MaFczB0MZF15ozXYIBCcY+0H6ZUFnJeF/hTCfA9Ltdy/xR8Tl1Gliefi0gogcXjtHdtNuqHMLq82W7Feylkd+znVLtQNKWvxdE8EZCO2fI63kzKhSagTM831Xi3WLIJOlsxq+9/MAGQLN26LJcVdOXfqOJ9JU73ccsyVHkiFlM4gjqxLAPEzlX8bqT+h7P/ovotTdAdo2Liy6a5z74UDXDvqLvU4ISAkAvzmeswhF5hX+yjCxPbEYM4RDMHDYrMzqKuTviEUFpqJMTZoHA/MysmeVcFlb7YGhNBdpUAi3SvjLHeebvDGURjhuhiry+WGtFZ3sZLxSx5JXzSv5KnwiqE3Of39P27BVl/IqEElpBmGo1LEUt11ah38KGgGlfn4gT9vD+N6xMPWPw7xKhtRON+lCl9SMqpmlCWq+1A/xzLpXlQT/lBo/TKRD2kGCYO6oIqM376y3sUJ/GJs08QQT8baCeYIJEb4J1PTQO3uJAmf5ujOtuR2x0OXlaKiPttSktUX9od1xl0puuO/jcL+utrbJf7eg+J7yScpWTn+r32WUtpTrB0zwbGugGIZVmNLYycEw4LL0tszIv0xY7KgCHEls9exIXCVlR3pQ7mS3Y5sSWvHMH0k0CYOefpBkXDBRI7fXZTlLGgkEk2niIQSEqVqXSI5uP0ilh11rYWRF3nPorQZSIICTjvBt0YCCPk+AWpU3BzG7M5jZ1W3AvTOgUVMs8Hf7oQclQREtI39YO788mo++aPMZisCN63scM3VYopOuMGxcoeVT0oAoLdMcWOcnVdMEzrX/UshTePiRPhGqSziTdzbgpoIookgHLg6+cGAumGz7NyG6lQkLr5mmwTevCujWE1r4J1WPo1YUyACkj/oi00aIlRBvooT4N3FlgPuxo3zYeHZfergkg87BseTGPXA7Iwh86plNepnGM/FahP+L179MqtzqbWU5OEGBMSPafCfe/MwMjxEkGRoZ9lXZJ/RKdbHzuOuOXDqB3P/vNnv/TeP4toZ9hLQZgfWg4toKRIO9TqaNG33dsWbT9pLA6zQY8UjY5zg5rqYkVOVC4pRjwLrgjyvJtcBDoUQMDHz6NZ4DZ1GMf3w5ueCfj+yIlxP3ekiDeQH2viTJas1zsQ8wCu1vnu2h9wIMcfg7O6Xi+yRfAPmnhbTRgFjxW4ciKPzgGrwMi9pQd7hIhMM/sWQfrsLLHoDoypEIKwW3vJTPPE0T/8VWFUBJIHhj+D/IG25pCIIepTBfMWT3dKLXirebb1x72pJ9RN0H05s4jMYyoSNcGaz277YeBolOPusMvKdi/s41YC2uvYctZzZS7rrZGMcUWkjpZZBYe/lA9AP7BG8o6KKXiOv181J4TfB9NV12j8pfV+FpiArNazohNd+wTPPTaoJGQse4tUxil30jsOReFFiKYb28RzOum+Ky8Z+ysmrjn6Ki3E9D22jNtwOvATUnpusREPMMDcQyJ0c/8nxjBmp8VSu1FYy5AB64uEcQrzut5k+RBgAvKm690Yx/a75yFVgkMtQ5069l8GjbedV13wuVP7Z7BUinTahz2ifIOSFhc+HAkqXsVxmBxROrSA6KWky4RBG84xduInIhB5UbxK149QVF7PXjcQ7q6cPj2lhwYRy0h/X6ZYg57fF58TbV0EcuyKjvca8KbYhrqjDRUGgs0vhCxBJVAi6nXdqOAaPOAGpEq0kxkxupqJF7T4wc5NlNF18xm7V9jsFXHwN196dZcC6SeN+VHAH2QnQD7QHaSXfrPBV5dwtFI2qZP18XYQ86RxQ25KKcBgVR/eEmS600WoFAhX3TSFkL7c0pp9VqSWxZpSLrUA2c3lj+y9E1NUWcS5xxx7Mqnx1fJUB3oGzNHYQjF8bnFh+iotsajti4eC72kI6W+AXtBe57juerDcuPKKyhhMFpDmUp0zke/gSfzM01Y870kZV76DTpS57RLLwmc2XilwZaZI8XM5BUvIFnprvVw/p1VHlAnoC6616LX8CBocn3am9dBNWG8XXrdVxytnjY4h7OOMY2iJTbXgfeW2IaRkdxYGXPCcxNdDro/wHJj4tVWARaeEBDOdYC7+w2anyXoEZAbHhFHGoAFZ305fJxfiXpex4ZAZttpsxJtT1J5lty92D4j4rUGAWU4/p2m5lKK9x/8Pw79ydxbkaIkQYNj2WRpBN43HFgRbBxQync64T7OgAzffW1u6mrikpHByHuYHaP0RlmcbImKLKO73EvivaG/nDGbtqQsse42O3EqgnnZMYhB1Gn5df7IeVB4GN46gsK6Xfi6auG0/XnJgI1KbRKNaTm5yJa6XJwtfPiRPaUwJXGheOM8jfMlS1QSI7U0HU8C7ZmgxtH3GtvfXgIgayHSrM7tbI6Vk4Q0eBaKBU9eqYID3aeM6AKkcD5zIwl3Tgnow9zbnuX1QLNb8A4LOukqr6HKWJZW3bKto7MvsnNz5sr5YeRYhmkvCGRjzI1lIaX2rpxvrhgAQNDRlIkdtn5eE83pRPGch6qZz1ZPO2K7788+PHzoNzbdI/dTvBoUMr0NKBNbxsTiLXu4o+uqtP0Mgyc/28DO3+alfKDyUZSVSIEY29Cnvnz8OazqKq2Ldf6EJQNncjH1ndogakUmPufsWC9jK7g3mCkpLOcszKgAOrhWJmET5TSbG3uKdai9HsQH3zhBub05RGXNqtQXeR5J/Xl+jq6yV3sO6k+Qypfl0JXUN3Mv58bGtCTZlOWT9FHOTGKKZdxU0IqASd5G++tDp/7DK9beceiu2/XcSa0OZYDxdPokYwxt4fMfeQ2LaUJ4tCEgi68jt5f7WYZQUq+FxQy8KrRgvGSmyFId7wcUBOJu+wHgh+FCKjzJcUgUygAOyxG4l4Zsx3dFF57T/DxuQtigg75z+YnA1a9Qex7mV17f1YKAyqjj1wyhtTPWmm6xC8z/+qiK6eHiVxvFFtnDs00rjzQ59VBDsPBgA73bLkOsf3w1+BlDgYKgb2ANedt85umK7Hvr33e4qrs/FtuJFuDgCEAiNWsPuIWkr0XMcYNDt03vehgpGM8tOIvSI7yXHu1ww8dLDoWpVM6ibLUq3xBV06/WPajm4tutPbHSN5+gUb5iDSaRfiACZRharUOGY60+njybEn4/MHpzqZGhIpqnjxrM4LjkJml6p5sFj4RgSHnpSi361CGSFFLNO5OBz+Y+VuXavi3eUT7xXyyFjteQb/5QwvJJokg2y5LHL6HwbABUyRfWQVR183XaPRTjAdBMuqFUwI5C0STwngxhvBZrKgvHGedvWksA1ZPyftz80yOBJa60KGsAt3/7347teiSM9y+sdKw5y2psDqtAOPeARRkiLoob2YdmmWLCse336QmDCV6B6A9yRUpxnXqmmGkAF3BxX/dllsZfBc5WwxBUj+wE4IQOnCAgguiPcVPb95ZMxZenuAYKtxTmJyOzgt7UBRwLhdtEJ08ZpigBMNUURQaqIAHBd/ZGusOVeBvQPgDBohv9NLCblh6MNvc7hMUF70ve13ROp02BTTCAL1dGZI5FOTF+5Wme+C4utT0yMjI6Pcer0/+JL+02G0Si+0gRZl69GXIisN1GagGTdjFcyUaWSGMygs8O7/7CmntPccmx8uu1ly5DBTp3c4Qvz1gryxmmRbKGTScC0UComZgjEbaO9pbynabHt3Ll31sQzyWaCwf4B5UwaSkpDiCvRLhW+4c0aUqXeNPz8eh7y437csTMmyKhUow6uyqsTW6TbU9NDs8zSPZtaBrolYyR6kxryVXr9rUZu6sQU//1tgIb5lfNhYwYsyKarhRyVKZICvUTljaRhh6xx2pZDCM4eswENjxCbLP0o/34Olnd3sYQCTafL3EgmIxzL44lLkV4f3OEN29cc4InC+F1c4EJvwIalWTAm10rz6ag3Z2WWFZvjDFlZZtcMELYHc2ErNTx1EcgysunEZwrsEsMM7xDfM8XBJXkPlG5NXRRh54hmql2oyIEVvKIssPSVkjJGrmHd6V7Uiw4yXXRqa3GUbeIoG8lpLvDF/rRBdOtldqm5jtSQzSdRcIrKxbcZDngfgHWRQqZt01GtxN2G9Nbls+O4G+NqwaKr2zUzMgEGhxHH4zDQCYNNta7Xm1xaNKzkk96JXxdiCwZZnhRu8NvxDNiUn2Cf9AUeqcgDZnlFQ4z1iEKrR114aY3UYP0MVW4EsOOxnkwns7gV4ky3TFqNhGCX/bGSlJgE7yIMlAGigR+U/sPvDaenu67AEJfvtAuEpL5u3U9b4QI5ypmyUYNuVtAqpDhBQRZBZ23kF0ZDU4XfFMfoXEcqQzJvP7YyPhVrE3DQeeGIZuhi3wOvVTYPvUT7I+N68ncxLVuGn/qlUWRWYnnRwFtSD3QTKEOQiz77qn/tZymlypCBB8N1CV+VhsflD7NJ8YJJSEp/B5G2I6XcdN/H7ID7yobmwiOUoKcXo/1ikBhwFIHfuJKMQ8oCz3z5hP3I4R27ikHlRdgFPkwqjl5mUyvPtC7J5KELr90pWvW04tt/dd5r+apTzGHOEl2PSImJ7UFahpTMHES31Wpvjqo+Yf49hdt2oFE/uZdytoWUxkiNm+8rWq7MH7jBI3BuOLPZgsgBGE/38CStkOMBMqDadVRfLtkrlA/APlEXPSdNI8xQt5vrsDJa3UAEYDdsSfX+YfQN13fKupgSh/6Q93fO2KL5zXMHDXpMwY40QQ15itdGwXtLzaFgNdTDEeMWEpuXnFpk76lK+FIDTdDDkVG0wz7B/wYyZO0qeGuK8hh+8p0W9rdCEDCZURTOyH6XB63Z3x9qkxTWhntLRyqzG3GjGPat80s5w9TCUZk5/+42j3ug7fkb/6JnUpqOav74xdE/wRRH1brzRRzbcGpllLf+TK99JGwfA5/J2i/LzgNvsGSNpodnUNCKzhI1TyG/xr8HU8De2KEcLEgmTqtXMMqL5I0qmadGNvCO+SLAfR/YnaBrK07J1STG01WLhlPtNUdTiA0gBQFXUrd6MrLFW+46sLyoB0dJV0CI6dLH0jZrtw20p0KGwSHTfu2L0aF9LeTYh1jOPw8OmEqCLlmB4eoec4+mppHOrvn2ZEHeUiMZ3UxQoQw0nJ18yts2fiiJqKUlJQrjgmF7B2BDzyNZNTxcqYB3ZT3OvtDp8miadM/IL+8iHvSnkK1TM4dJb9VteQ0Ie6RiBO2CQ1291lHoL1ELtszpW2kWfo0Hjxbdws8djJ4FfVI25tU0dtsQumFGAfoVTkr21p/Sta0xRSBW98wyR1UELqMeUOjwErSdrjIyz8RhBQaBdvhEjd8A0vbUL78zPqfez7f3jy5bNCdaym8SkylWYltoWjJep2zszoF7OuAybip2Pu/aJb/Q6bGS/z7MCoD6voR/sjNzN7z37N3rGSycfeL3DZ8Ns0ANOXioSVnx2/HIvmTmJm96DEkNk9iBM/uqCEbwLEBpHWGrrmQqZhAMR7QwI7ceL6JFloOk6YOtIHA8m7cnV3mfFtYSVFWs3afpu6BwFj3A6DHsDnzqmRgCeVNfzVD7UzD5Yuxnuvnar2fZ1Z3wdMj9nIju1oPncj1x5WQnOgqukBFAiWdLc9X2ixuoBmjvPu3gUThFKEriUeoVadC61aeVH2IAN3mSSPS1gT2yPnWrjJ8ezDL5rTqctgfGWO2tBg30bR076MEXcwGqYKWhanQahBCSJGCQwC544FAHBsbAbTYFPlWkp9uyqCJ6cHTIlH9IU5k1l6/A8m41yHu6Qh2jyk/gcboL/GBksHXkgCCosPvuuyE2qFFPqMf/t8DTSlPiQa6hJRgBh/fOfZeMfvxI3nh+YDbMZzdkOEd5zYgCqbxC58OG595ngpk3JUqVYIpgwp/TJ60TOShJoQK+00ABKnBjvbOwRynESrl8JbtpBObC1Jr0sNlmSuShRnmolRxU3BfXZWxJnAkoK2Sp4qigkkz3KRQV46zcKQh9k/ULTL+lwGCLP2+KtZ5In6ktPbA27LUwk6AOjdAMFkCz2jdDQfdg3s56ifQL9KaYjBAhoXboBRxp3maJ7OYOlgh3bGtBwFE/UXk//SMfb4yxrLr57ZRsxTRQfwlLJpWV8ufxDBiEGEUY0vmGRNF4avii9WrhQGTDmCaUsMCSyVbRjQaZ6kJy2CeaukLYHxMHxU5EYuh50uG4IcQKE/t91PuzEOCb+hr4Ie5dRQU1p+8RWWlQo2G6EX5mspnhPcf4kq7EkWF9XiRbBZjVgMmdvdMhUI+Lvw4AzndwzJWkYghhAlJg3qTLk5BZFe3b/zSitLf/k6w/LFQHz9bKZyH3IJ+XJ5vP/uDFnhh9jLoT0wowlBmeA/Dh4wZ7EkkDUXPngchD1AbMFWSPH2agoKNaZSNd+yTUqnTVHL7PgMR0i5OBzduLG7NCAohFYrx1q7oxZX6vytSu4N/641L1J50pL52bm+9zQ9oD821jsWbUN+X8hnphuu3v459g5d2AjW1sFSfReboQ+XYUJIM3sHXaqkW9z12qWOUcaVAR4x2yPmQnHOi756h0CwAVkZiDXxV1Q==

微信小程序逆向保姆级教程

与上面的密文一致。

简单写个加解密文档:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

需要注意的是原解密方法返回的是对象,不能输出到页面上,上图是我修改了JSON.parse方法为JSON.stringify后的结果:

微信小程序逆向保姆级教程

输出会显示:

微信小程序逆向保姆级教程

所以我换成了JSON.stringify方法,将解密后的内容转换成字符串输出到页面中:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

但是这又引出一个新的问题,原本解密输出的是对象,现在输出的是字符串格式,这就导致如果你想修改返回包或请求包的一些内容就不能将内容重新加密,加密的结果与小程序加密的真正结果是不一样的。例如将上图解密的内容不修改重新加密:

微信小程序逆向保姆级教程

ZR+7AR/04i1n1E/R6hb8GFoqRz5RSRCvjVlEWxtLa6LxHTF6o6pTgmIxIrF9LQeXcFpswgg+YNxr5FfnMWGfwIl4cC9rq1RRSaKLgjK54QTlJmuCX0amlUVoGh1nFbGSFjoxfa7Pt2pSdFTkDDvH3OfuNy3E7urAXKju1ff2WFx53Dybn9jr4oikN1KwAZyHr5hHlv8XFv7pjl+XNo88HRCSQu4ayFYRSWPyDyGb9gWlSVXKCY9Gvq/P9inVTZenhBrAMnfOWwvOfcpu5GBgESEeDpwl9dHoV+rktw8bj/jBukRUld4eoQbjTM1VdB1HCnsgTJgG5MqKatdSze81vmuztdBsna/UXWX1tr1uoPGzbbntpF8lExAJ0pIGk8WmAWcRDEVwAeTeXdCVk8ArpkQt18ZbWN8lGZ5hhH/hW/5KcYYbJZf7ui+SJUAqqlDzTyXa4jypqI2ni34iofiZdJOjXCevSR0EjKcdbNDbltrIKX7J2GVnLV3yI4+RSyuZSTRb0GpqnhY6IsAob+57jZc1PnfSr2RLs91Rquj7t/EXc6yxWRojdVzsUaxjjkUVE1xjZ6T+VIDtLS1Hv0q19jGKdDiT6cBqa9FxX3H40KkpSz+DAUQaOxcuCqa9zg0HiBKwadMxb+1vnM5s+jD4x9rz0goEDPTs401/AsAfRMOy4fhdA0dzZg/t5JHtoAh1pUOYUXrW3WqB+EhTsauDKwXApQ//F+EszLHGZD3PPL3mRKIUz3Mebd2XOpJ+wCkmOAsH1Z0fdxgNr1QcjtF+1KResxc2HJ2Iqg9IgpLgjKI7+lWGtqOQnPMFekoko8Ghp4RJ6eHLdCOZfWlZe0MWDiknOA542t3W/PtvwF1H5NwEOTl6Z+mEwIRe3WumVZNtu2wI9bUnpP73Bm7qutf7A74q10EpypGs0OHyCUsFUm+QoW+XZmGPaqMETGRIlB8n2d/oKuElNranImHOeWNmb8DaAUP3Ylhy/V2pfBaxTDlswF36rRyXo8hkXPS4JEnSPF+RsdLJyyXJLGaCXQOFD7EvDgp1w6vw6WtMo7QoyS19Ib3dFWuyMiGNDuHwKvXJg4isYd/bjrEmxU90jX7MuKxXnSuzEYRwIYOyxQDgT4mvCePxef0BZY4rwnWf4nfZ/hft1PFQdL+miDm/EUbQUckBMXnHrGD1t2rl8GWbl3CLdljMltcu1FYzGjF4GLhhfqFts10Aey6w9cpHEkFXiXMVQcf9DoOvMfTK5UBlHKwB6eFfUIOs2NIwlwaB4K9GSRYDo2k4H6h5fl8uO3S4I9bTprT1VnWn1DUVEPKxuMEnrK1aN3ZwFPzA8dHhi1wl7zsr0JnqeUKEUNPjdeRc9krC6Hn0oIe+evDLnSCbqvs1Ly6n4pfu5bJteF65fQ98xP/uEDbhVqzXxXugsQfvasT+IeXEKU2enoDAx5ASuCxu0A9WltjorR4v+1FAVgMyd/utOzFtJtIKQT/WkacblnsGy3r38hbRDHAaOAecnQI/JxfGF7zhiG/zWjixnyXH+Fj3wuEBxOZpZ5XE/Tb4xHrLvixXRZrxcXy5NbfBNuH2dB0xpv05PJEEHI3FwGuY9adC9Wb39/wab6wumwrMxXvZMBmUkU3R8mRJ3bStaXshP/Vr2sEnfAp0sWJnUZ7pR0MlgOM5u9CpI3ssNINhmWcvQGi0BsnrPJAFX6lDtcG5niH+31nP8A30qy6Pk13qr339eV8gwIxcDuH4jiK3xHPqCJ0t7vim7w37Z96YefG7Y5LTEI40LUzBQKmM+lRAOhH+Gd/RErA9/kuK86dKcV3zwREE2x7CDjpffr+6/xt9kbhKAN8Gf0wxE+cWXeqmAFem3drFyAJZlrMjUy624GTChDHacRK4+YYfFoTXdzZonPPh4L9bc79NQL8KMCTON90c7BuSw7fUAvZh8v2TB1pXSa3qpxBTb5sK1l63ny1DjRXYSc9yiteWAeYF77Btg+rgEbtu8LWykgb+pjctyzOfX50QjS9z1OR5YpCAoAJtV98ZK8JBd64uY45RNrLT4YIq4K6L2EVjbnr9hsB7J0cti3hg0KjxnieX7lIHp6xsQ3d/z5KcIbY21hqZOslj74jkvRcWLACdl5we0XudHKmz/kEeSR116SD0Qu/Frq3UBwlr8cc+KITxiiNOKjGUWFjEYU3fGlk/a7JnXiPSLIFsbEN+dqTnrUCI/AC7ZvFCad9irMjcKhQXNusyewU3NHj+JD6xBW8IUWiVjVsq+pXunNBhDcHbDEpRSajEL01OELkTMTgycLOkwyQ6NDvBFzBhTKR3lLjEjF9Hc/711ydXA7S+VsfXIQA2pEOis3rhDTwGkN93ITtdlZt2to4J/Sfln97w1u1xkypIqr6jx7U57YvcsNnXSkn0rmKKeylcB3NXioicgSGqBYD+NvmqtAGhsbbKuTrll/gNCs0uvADpmyD4AE2LU1wMG//8pjxhC2svvumWXD2asCVsrmoaUh9qo63A8ETiQJF3eIJMcPefmEaZaFckkcE9ej7mEQluQHrgZlBWpgqrrM6FO9VMI/QdLvLc3z/38FBYm14XE/i+uuIp8DVj39rDOlOUqiwcD5pIkBCSi0ev16QMs9tJ7jFuoRfSA601agCIxfNTb/h6X7a/8suMvbKVrwEhu+qpg7KO8UDPIV2qEzM8hElgupNeiSMENOjTHOnylXuTBU55ggAdijfjSd84oxojtb61nHjnqBtv9FqplD/SxOmf0B7384p6ZCoqf4mTo+nZmK574dh6P/DKN6qr8eV8ItFc4kHnRbu47xCugyNqqSOZpxvWxOGXamoLy8Rl5UmI5pe8f9OWkupu3Hv7o/89S+bjkzLBStQ1o16vGXyH5Jl71dHnoHX0GaCymXAaTEIk+/ISzzjhwiBNFJSIlPIdiaNchTMYhltfBheeIYXK39+kWAr6UiBiVJJvadcjN7g+bvs5PcJeTgP5zEqH7w7e/XiYTnbhL9hlseZvlHARLZaZHck4W/VRw+gjtg6zIU5vP9C/dQ3PRW9BFlRkAHWnOStpBHtKkRXWLWdxKlcy8wSzxnNbXaX4ivp9X8xSKNoF/FusnlLZF5heF2lfjaanupftvdcHMGDnQGPQu46TSIBtMkfgqhNekxaBadAl2SnF4z6FmxJyFWUHTCZvnZhNMN5wMSKqc4rVSru/ja6miWkn7xPNJqanReenLdbGycguiWauOoVMztyTwwcv47gH14i7mgGa0cjvaH7ZpopfzBfayukn2+RE0qrH/1CdZutXmD+y2AHkNU/SGgJ32ZJOFPWGt7VUamVaCHSp1oMtpUiqy/kBPbxyfbjJswJZxbrV8kbfM58ux34f7J7OZ+irgLePjVtrsT6OB91cyWZQ7PkGNWca08SB4hxQ4smUDr66ACsDLvIM4LZL9AVVgNKe/Zrt2hYZGKHWMnOFt17hLC86SIB2rdR+be/bq4nVFtC2RqLDsZfPYBfK+3r3HiVh5FEEn6E6v3GGWpJdOGs4kNKf/thfXh91ewnvpjaYULw6jbm0et1mj2vcghdCkEOYwvab+eUUdYxvWJ669tZgRGRbmzDRUsOpHfSwpiL4wsHGN2Dd2b2qp/FzKXtagQpJ06oLiq8bIGlDd6t5vft4X2p/lr7ygzY0JUFi+xDN2x/jrA7wwuM33WXGfLNBenwLVKoxmf+CR0EyhQ5BsmiQZAZxOEYpQJeOqOg43V78IBAWdf+Anfgc5rLlkdALy/exCcgH+yFI/Do85Abep+j3grkEBhgylOObh50RWxh7iJ/B9RTzon4oexeYRinNLcOhki7cs/ZdqnETvahzAM9ujj3EcRcJ1gMoOZIoRCXbWDuAfsJ6vxvGOmWzBT/Mfact6H9ywevVq3A2zquSzngIxTXy5qOoq3546ygPTEcYw41A4rkdyFOR9KzHbG5cIrobg4c2kwP3KL7zruxWndMJi3weNf7zR1msaPi31VqVfGTMocGcmi4PfUS6QwRR5YyKUec/3n8UThIfYmbxJd3jOTIbB9MFjnfFOXksVDTC/yp6Yl2FPDqKA6TgCEW+5kR6JmZ3344iwyBjlpOjFJHS12DwdxWiBuDAwbbxqeWVeE/BwYApYJaYpJCvx0fsAeoQGOxUuzYnE2uksXFXhykj/wRYWxLD6vZo9kJjsStcAXFZKvjZ2Ju2aN1crTC97C4EkJlGA0dOL6Twumcw7xG0pQW06Xvu4P2b9laPswJcb+bMjKLOIG/+DDwvpo8l7OinPOdSRufiz83Xr0eaLOvfD6gLlfLFNJaRxKV28g4yRChJ9OvHvz2v8g88wlvABQ1qAiUW2pwmjusQlsvTNeZN2UWEq7B3tHRJthKt7Tx4lx279mEAEm4Mu5i800WtjpGgg+qReEGd8Xm88GoCm026Y33dk0xCwg2Cmp2v4IFQVpRdTO4AINmfTFypscjTwPJYI4Wek8ZCeUvexse0ULTNGHKBrbQdstGKqaeEiWiVPrClQN5EUtGyTblp+LL781eD/fC/SeVjdLyzIxvB3ZHnNIysJ0ITvvMG9BDFw0VtVsVwjCu1wskYtL+9X9vSxLpTWvSw0Q7sUM3elGljvWi0ju/2XCSAgc7Ych61vnOQyRHkTicHUm0pCNiQWKfXjo1ijTqWXEwDjfBNGrGNN5TjDrVwOsdf3opI6xnB/t2+rdyXidNCt+5qIlSh9nJwfwfoXLE12wmAHyOFB+a7/tsKmBQ5jvIKEPYVlsqmvp4eWrTm5TNn1DFOGqzhiZXfAdkJiTC3EM/6q0kRKzCUsezMHYQgV9mkW5XC8EVTlwBvH+u/xtJZiMRKk2V93zDVZ6ypOIxjS3QogpTG/mO5VFWrrU7LbS0DKtA0mILbuvrC83r/J9PM9AOwqVnEkRjaC8VZZowXdjJq6yJG20QGuc+DG0cq00WpbXV659XLDV3uwRqSuyKZHMay0dbv+Wx6jUR6aQvGbiyaEP1z7ydKlYsyTbtFN+jJYLTlUc6Zi6S19kYEqPNnLErVpeA/1JdytyJpwJocxTFpdTOWakV09x+Q5zBz++EdLMN4hvz3q1wpeyk1dB2FWqh8u1yCNb4f+H/7F3Iasyir9EnpdiHH23xiMkcfFczUkhfVlTM4M8kN/JTI8fYH2BDOxWIdYo7ygwHXP3WA6tJIokX3lzZKwT4ofKiEAipl/wKiG6vXnY3AaSmK/dHXQwR5wKws66aALUBBvylE3eB6u2qYkbcJ/264wfeh6/Kc4yduiASxPskSIelo+1Q5NhKzG/RfIgSVUiLecWmqXizE+wfEB5Xd2pPBc/wFjUC/hYqwcbOFJjdDMEoovK9EPw/7tpZ+k4u8jSGmgo4zfrDvNo1il8XqNDf2iMqW1QaH9itzDzET+HdmZQfnREF1/9a479e2K9bbt84Vw8lI3QN4WRbotIQWnTtk8L7uZiYkFfuk5D4vKBxz5rDtmLxEKa+vE4ZBvy3sazy6QZg6qOilx0+/9fgzti48Tzp8u1ZVUZHmIvPhZV/MNXxdMQutv+88BlLGvNKyySSkuP0INaL2c7NrpjYK5Hk8pR06skd3RjPwgpQWM78Qk1JgIuf59ZclAVBlx1cLelP57gHaR/nFJ1h2wh0WGqJH53eMx/fhZIxmB5L7BAbMpRhUqOd+BIQ8OrvmrU6wlT7tstA1qDxiWc84NlHooR1E6MTQaGDJHl8gEKKZsKvhv34KpFLUWl/M9fdrJVIfbZ/fQ1AuuYlCePDgO8sEPsLmQsgVURQUldDRgGCGjhzrMi97ek/hhy2ifjclJAUqbTSDqSE6XXKpOgfst1LictDzsTCUZfv+E0gAVTez5lUwk1vz687PfsFo3hj72mxwOpGKuKN2F4q81vn04BHmO4BZYLNEYqDKkm4JJ3ipgUTRXT24NwEd7nBbiE1V1AL9UB3r4V//KE6DBAOAc1IbcPDQtO4WODriRRPGVR/7JGdN0fKRxx0iH+M/pBqY5whilBMPhwB5D6xbLc2aywC3GTjmBE4lpuf8dvWPqCn6BuUEoUtTvoObzQJxz14yWTE2Ir2zDK27sFaIjONzmlCIg0eM65HQL6euotVj4ySffQ5/DoU1khoGYbYk0RDMyScrBseYNmvkTsqOWGU0WyNZ8PX/kOFtOmXCOdl7IDtc2GaU0DrOmQnJUn2iSCS/pFjOdCBqMV3LQi0DtzlcHkL3iEv3Zil13jgzz9mnjlvf0Rom5CBvijlXQVSNnfZ2kBmA6VoJg77XGJ66a9O51NCSDnhsq0SebLod8VgEmdd1p/1d8ue6kMwlJwOkJ2z030LfGV0UufZLYkaY32/eveHS9ASmPP4QtkMfpu2+y+ZL9jJDKbTT7YTLmkf036Dc6gmNIUSna4zdlL3DloQuo8eNZrvJWvd6pvHxnFTljyFh44XlhQFiGvZZCZgDd0QzDWjkbbDwdVbIZqUbdlN9F7bZLQ2K0XDY8PD8ajoj0wprPgdYnCTXvazs7SV73P5iKlXFTryYVJzAtqz7QO/6qBLGdDjL83ds2lL2HHLwuUhUEw/hQoS/fLKNesado3ln0zXsPwRR9XKdDL+Lr3fKpot2oAMr8jsQzC5iJFsbCUxGckoZVRAugl4/menFNJ3rzGeKtlawtRIi9m3qy9Ublabg2Opux7s6t283oWilJZdpz8noztouqhBB+XtirpTHu0oL3u36XuXhurDD9XX6p3UYGxpulkRsPmafpvxnI0ezZ581HWj7DUUAbUNgUtC6n8Ak+qJ8NzFiCkfRbzLD82of5LW7NFZdJpeBh/cDgN/mjd8hpVyox2AP4Q7kLmjUhxLvbpldNhdxMi1mqdZ9ae47AmBLcoHWWykiSnrg1jnT4MDQwinIFvmDQObBOSgb7/OL7igePJ19Q6qjKkl3oouvMqcPCeR5SSJ/ucC7QkAq8tP4sLfq/6ArK5s7D65O8f472wGbxyi9ZpC7CB3q3OFbL9D+yYvjGtoVNui8xqldhbMRjKaSygDpGIbF2SvFKmCcQLozVUGwhAL5SOaHC9NfUBtRuTltYfZkiYiM2zIp6qVUCgOG+a/q6oa5RtDaoYSyNN5j12QVQbXyzeN9k1kg0YaWXoWExh4czE6HkSMxr7vUckGBhNEWkOgB9PHNq0krIN8H7qjOjB2+fSomeC5rY6W9PBBpBNACyvbKHXv+JO0B/8q3TUQSUvQytyRoMAueE93Mcy13v1xNMKumCWxi5+TRNtQR+ajm0PnyAiFYgJMoArlYw+pe7iVyXtRmlcl2JT8Taz6Gr6+czxDqatsA8IhtjGP0AdaHOD72Sipx8S7z0EyUZJPhoGPHOv64RFFsjKGVQH3QVvfPTrzXvWlq4shFfrYe62oOJIRYj16icZWzD7FReRwF34+jvI0p+3SKkU8k6s80xBU57aqmnXotvX298KpIFi2QWd5/1LQ97TicitXOUGNkc3zj4ZU2AhQv1a9XBBOKrwu2VdesorwAAX/3yaJqKcwiiebLZwnaGcquWCLfVTxcNFwnuK3YNy66QyjfnNIWpfeZW4FoX2nmB/tdb1BYn+vXHCPCmCT1WN+NgZLFR6KHZ9Xq1EdUXJ9ONFiRs649bwl3Qc1M8kN0EXp92pSK/dxjiSEvQnRX6lNFDEqmbPJI589qCgWldB3vC9gVmxUclOo7zZVy328ziTeNmyd+62VYcJVdXzg4w+OrfppwkZnkrZG4ZLFMDinFxwPTy00v/fkDXVXIET/zgu1afQQTbfn1w9dfTlr/793lqxQKi5mH+Fxj4iNzL88zbTSc1YyIGz0qja8dv4HdS7d9RQjkxU9jkrYRdwrPeZ/djCD4pBD1OlMs9a0tFjYPTRfDaXdnlNSUi+gRsRsIdIQhPIa6TB4AFOv+Lr9p1y+pQ70A0pKkt8l/DFY+BeLvEbt+93ySM0A3W9VOAFNB6LDxohngO7csEWl/4D5QGW9wnQ/X4Ks/T5cBe8RJjjzzxqvl3vXtTBfVfcPVobD6nScR4IB0ZozcXMIH+8ObivgvTvufwx993cybFLW8JtIpl4Z/y0cRk8rYhqLBq6TT1tSrDDkSGBy25were0y6WnBTJYXsHOjix6UCGUvDtgFjmH2NUCCgJhnyJYeVA6GATbsSZSRJ7K4OgMq+9E/LjVft/ve7kh+2hS7BaaRDLG0tK3XDQa8KzTupu9RnF3TjpdqotDFae0EoV/fXcFx5gW9wHegT6MtOZGVWrNb2gGtxNkVZWsst+o6Tn/6ZFu2oP4wFnOB36fPKSA4Tj6Xa/iHy+xdxrjRlhy/d7Hl5uP2mcAuss+0nl/S5cxDr0GyaavO2vFNa51rUnYADEs7EvM/6cmOFlkvlsbgzrMkatUm0Sf9V+FrLvRnuR45xLqK7/OodealRNNrnE1z2MiPav0d3/9QAjf7sXC/S1QMB4Nvd1xW7QLilCSttdjjs5Ewov64JWstSp7BRJW7qfV6lAn6H7wW4RMPDks+Sia0Vf7Jp0DPYpExFu5ldKa8R6ppJfrdtPFKN2gIluWzkrl9jNGy5oyYBITn2kKUQzIxhysa0M60hhruJk0cort1J8SsLKVij/fIM4z9utbLqZX9Rmw5Oe3TqFVaGe5NZe/UiYc1bl2ZNygttQTBjeWTyVB2pZ1G2kY7PqDPJnxu3bBNNUw0atZCs5WeFyVWJmxV8gRR0fvTQz82JZ96gZIzNnKlZcrK8arLGNrSuUr/E3kMeDmsE96uSilx+VJ8v5ZUHzdS4MAooPBNL+p2iUbwSXZC6pRZOvOWthjd4PFDWDvWVn52X8zUYsE2Z0LIZOcVbrXFajY2aM9GRiK9/yUjrT5JlXzmNP/6fFcJka34Wm8kA6c2I9D4FD9MRkdLl7dABLA72uoJOinmusLd1lQ29VnXzUJxCmzfgq8lsE+Np69DU43IWEjDrIbioe//4h61ErAAe7zPTfVb8igVH9foVZ1UjVX8n71p7QnT5hePb1u078PZiVqjx/+wDEJ7nsMuG2FEUfp7sOj1F8xx6Yl3XHwE2Cx1Q/2dXG7WcO/4UPRuk1K6y/pFMPYqi/lEvcka5HxxK/gYAwh5hpz5LVUzFAEFGGdMn09lnALB3DcsdEapSaE2QUxhAsxlf1cYay2fGgd8oeFO9Bttr4bOMD6srdeZPtc/a4To0ak6xrAIbEXw9ukVnZEGu9iC/6JjH5+jsHAJ4mxDZA70akuZpsHUW9TP2lo9lsCPMe0RVezNQCVgGd2n0/4m76NmZiscDceEMRddj+cxZXzDxf0EQRnTwGyJJJk3/FXwnmcKCzar9mBiIIAfOrv77N5gVIgavJK/mNbXi1/vPH97uGUHjLgkCd0s7vdK2nfo1NaK7t6rSHn2O41JHPU/5v8M519RYk1KYxD5932iHwOmMbKxNv9X8GzH/gGba3z5o8EhD2YS9GyOUTSReYzrYTUziMWCVN/XjqKxWAkVtz0KAAIdTek4GsdRXfWLs4ujE+pfi2dooZ99LdJDxEO1JnVetWWnDCQQeP0ZCdwZHiUWo+g6CXfVpbKNsPTjnzFH6PT9XtPeWfhL8l++AQCdEFuwV5LxogJiE6qFM5AkPZjfJSX6ufaTMNadhVwB6uYcD/DyYYGvAqo/OFs6f6wE2kEDTM6UUCHL2UFs44yKAgoPD4stRaW1psrvhWCUgzcdsDFrU0pukEKZ+K9XmRRKLKAaszfaN+deTk0SaEnEASkg2TYTqVgf4ZgOfvc9S1YCCwMgETEpx5PQrfW1W8chLuA==

微信小程序逆向保姆级教程

q0kcUFJHRNMZDOWXR69HBiADKcfHDaKGRbclXke9ekMU0XlMnxyuG0xA60iKOxTwMJaH9xiG+TvwbNq6SMi7MMRWLyeuXswpuwKh9/sZQnICJtC766o6CPEJ2PpxFHSOiaGdkfz+kj/v+ZgaEJUqCbojOFpjcWV8JzfZaeDksEVOrnN/vZy2icoNHvup7WoI3d8DxFF6aJjqeUuylzyhdrdb/VltoLwXwrJxUJsbTsS6ZZfrluWo9PwZQnP8eXoi0Z1qOwqJG8cdVeVq5rurbUWnxH8FoXOT6Y6e48OoSh1kVvQWmWno9j6wUw65nHCybDcHbtGIc8rIcuXJfZ53WC9bMGIVoU+zuG2NxFFHuZbZNjyn8tDh4e1HFzGhpaMRSLQwv3Fn9FuUUdwhCFIzQLE7SZo+029LjMycHbhWGIqz1UvldBi0PvM2cnnW5gHg59x/2SwgUpu7KlodO0YVvDXERXMoW6PNYfpUTQ1RxA3q21XZjF4KbcPUgjuuqlB/KiCrWGKWQSZEHRm6hK6H2rpLFCEca4/1kspXbcupWCJWFtSgU0csfy+AzO9EHD3VyaYpyukDbDnBk4Oq2J3lANf0d1fBKvkDmwElPjgTy+wNSTtLcTJb/kPGTFUPuX9sO+nW4KX9IHLaTPZ3jqN8p5QApvQXCbdv5F6fDaxeC4SX36CqJOxU0pzBUvrcHFOsc+2RV4jk/S70qA1x393GRW9qchoWMUKyzPEEfwLXTpVo6BOJBWHTOU1BPaupvbyIeOfNhSNy/hxC/3laclTSRpHcT8uwzaPTZnTbSDURW9fgbPb5POqYwMbO4ID3m+c+VHbffz+fvo72nl7UsyB3rc8AIOttpNz0XVbeRJwfLcYloLRqbo9OG39o1pDazo+wiLVuZN8D0D3v5oMqyi3ZgrbH+OTGynBTuTvtxi6/PEERVrnmWHRVvPGz9xGKLBxwQdcOEs5PkjF2HvUvk9bhsHJVBaNRMIau0q2VrPn9eDse5Ffscp97PWubyKFhuucThT7vhvQu33tdAR/xSVoR4iGpVhbzezHYs+NhGS9ckHZw4KRy7SpNjRqsi6OyHRNnk++AXv4V581pB3YJEGFl9uVwl+s6DUKV2Yib5ngUYp4b2AHjt29T57eD+NZsbOW9VXoKK0+L2vz223t7q/wmgp/+Duu4SUAFbWoy/bhfX10TGOgaovwsqj7Un6/evIGHhf+0bbTwfb9zCJt4gs6BawFbpoCpxwYBqApPIh5efplYY6jnTV9ALySA+73miYbAPpD/9/BQXQ5tq1Z8IBVeoVk+jz4hwlCvFShVVwSAyZHvYauaYghGnnQeP58VpbhrLku0E/LFDlyuOBQpf9gQlsSdINVfdYJkm+44W4JHBEg3YmKhMkg6OABBh55ActYjFv5y/qWMrciUB32UYqVYJvuUQwLZcqHJcS6CaGgP20jPUHVJ4psQfOf79S+pc3X6XEyT8+FkjtkZmAdPE3ictgZ5myKfvjiB02JCwYfUCOTVfE/0HB7ShUoGyk55jzOrOhRX3oH6ooBXLi2AzQyBjh5j2qly1Cg2rjNeGW9DnhEwavY3mDl3PJpTGLffsmADIWfwwwZRnsgX5OPromKyzhYDCijoE6yhcUMmV1ZLN3tiWjPtulJslwrKDF82ZxlYW7ZHAKR0Q09TMPw+075sIKMWEPoe02mstH23+M+eIKeUu6c7bHsdyNPL9LqryOaPUwcDozKf1bYeBiOZT9/xDMYOzf/9cXBB8hC5TLqnSfdxpHJOT09XR1k1/KBkInCDa+pZP1+bOnt4Lz0LdPhyHxHEgguFZUIdNmA+Ys7D2Sc8zdJvdbm8zLSRc5+PqCSoGngM/hpdXLCCcZ2VnoBwJIgKJezOpzbtsIlQ7CUys03boGLqWfDCXRFyAjYxX4ovPh5HQCJxCUa+fEX5COOmuMCC+eKsk5oINRd8rcKNWvvrbgUYDx+XlXr3rfW8lFLEJ1yhxDOXLhtppXhLnxbWfqohy6p4DLqcLRvXdRnEd0AXaeYxfa/G2BcpzET1N/bmbtH/iCo2xBgJcJpKiA/za9Qy/9bNsOLDgkkQg6+h9Cy1t3nyuRuIhHNAzNpyaz25DecObM3Y6ZdzXe6J5hMGTYjXIMbIhGjhHQH6in5fQMKxGNujtoS1wEbPrWFNSAeYcm1pMyQvqiI2SBOzAetGAuFSSHgnA4i3E5A/VobhQI84p+t6e58y8BRnCUMO1e3tz1scbOSHg0ErKPtvsHGrKTLiIvYk08CmQudHDrcAxmJn5bv1rgh30OCq8oGlYSD+GoUSxE68eA601O9QnYXGR8WWbZP6l8T8o7mlftHbFY34CM3TuC2eoFM+/l2RylWJllN+C22aldrJVuKN4HyrDn7asoPoQf7//EOXmunfMVXLjeIg5x6yKlBIqAQ4GW/LxyP6MIq5nAfK3KOk6jhq4+Se3ZZ4u8/anLZz/fG/B7xhfynVrrSXHmd5uhFjJlG6km/KbiEUYnv0bDlyWnH+fkU26HJdrMiTQmw3MjqxL4iOAWR+EH+/xPOSpCWTUKVYzv64gDjUBQOF1bvQkZyAtvlwr1I/rciXMgLbrgiBPwm3tTLu5wvhbpoE2x4PS+d41l19U5M84/Q5DJeWPyOEndw1DvmbPFH+VWdFeGmVTay4grXwqeIIJWtBASrQ+Zy25g+8oyNLjfDjCoep6wyCJYUc30MaFczB0MZF15ozXYIBCcY+0H6ZUFnJeF/hTCfA9Ltdy/xR8Tl1Gliefi0gogcXjtHdtNuqHMLq82W7Feylkd+znVLtQNKWvxdE8EZCO2fI63kzKhSagTM831Xi3WLIJOlsxq+9/MAGQLN26LJcVdOXfqOJ9JU73ccsyVHkiFlM4gjqxLAPEzlX8bqT+h7P/ovotTdAdo2Liy6a5z74UDXDvqLvU4ISAkAvzmeswhF5hX+yjCxPbEYM4RDMHDYrMzqKuTviEUFpqJMTZoHA/MysmeVcFlb7YGhNBdpUAi3SvjLHeebvDGURjhuhiry+WGtFZ3sZLxSx5JXzSv5KnwiqE3Of39P27BVl/IqEElpBmGo1LEUt11ah38KGgGlfn4gT9vD+N6xMPWPw7xKhtRON+lCl9SMqpmlCWq+1A/xzLpXlQT/lBo/TKRD2kGCYO6oIqM376y3sUJ/GJs08QQT8baCeYIJEb4J1PTQO3uJAmf5ujOtuR2x0OXlaKiPttSktUX9od1xl0puuO/jcL+utrbJf7eg+J7yScpWTn+r32WUtpTrB0zwbGugGIZVmNLYycEw4LL0tszIv0xY7KgCHEls9exIXCVlR3pQ7mS3Y5sSWvHMH0k0CYOefpBkXDBRI7fXZTlLGgkEk2niIQSEqVqXSI5uP0ilh11rYWRF3nPorQZSIICTjvBt0YCCPk+AWpU3BzG7M5jZ1W3AvTOgUVMs8Hf7oQclQREtI39YO788mo++aPMZisCN63scM3VYopOuMGxcoeVT0oAoLdMcWOcnVdMEzrX/UshTePiRPhGqSziTdzbgpoIookgHLg6+cGAumGz7NyG6lQkLr5mmwTevCujWE1r4J1WPo1YUyACkj/oi00aIlRBvooT4N3FlgPuxo3zYeHZfergkg87BseTGPXA7Iwh86plNepnGM/FahP+L179MqtzqbWU5OEGBMSPafCfe/MwMjxEkGRoZ9lXZJ/RKdbHzuOuOXDqB3P/vNnv/TeP4toZ9hLQZgfWg4toKRIO9TqaNG33dsWbT9pLA6zQY8UjY5zg5rqYkVOVC4pRjwLrgjyvJtcBDoUQMDHz6NZ4DZ1GMf3w5ueCfj+yIlxP3ekiDeQH2viTJas1zsQ8wCu1vnu2h9wIMcfg7O6Xi+yRfAPmnhbTRgFjxW4ciKPzgGrwMi9pQd7hIhMM/sWQfrsLLHoDoypEIKwW3vJTPPE0T/8VWFUBJIHhj+D/IG25pCIIepTBfMWT3dKLXirebb1x72pJ9RN0H05s4jMYyoSNcGaz277YeBolOPusMvKdi/s41YC2uvYctZzZS7rrZGMcUWkjpZZBYe/lA9AP7BG8o6KKXiOv181J4TfB9NV12j8pfV+FpiArNazohNd+wTPPTaoJGQse4tUxil30jsOReFFiKYb28RzOum+Ky8Z+ysmrjn6Ki3E9D22jNtwOvATUnpusREPMMDcQyJ0c/8nxjBmp8VSu1FYy5AB64uEcQrzut5k+RBgAvKm690Yx/a75yFVgkMtQ5069l8GjbedV13wuVP7Z7BUinTahz2ifIOSFhc+HAkqXsVxmBxROrSA6KWky4RBG84xduInIhB5UbxK149QVF7PXjcQ7q6cPj2lhwYRy0h/X6ZYg57fF58TbV0EcuyKjvca8KbYhrqjDRUGgs0vhCxBJVAi6nXdqOAaPOAGpEq0kxkxupqJF7T4wc5NlNF18xm7V9jsFXHwN196dZcC6SeN+VHAH2QnQD7QHaSXfrPBV5dwtFI2qZP18XYQ86RxQ25KKcBgVR/eEmS600WoFAhX3TSFkL7c0pp9VqSWxZpSLrUA2c3lj+y9E1NUWcS5xxx7Mqnx1fJUB3oGzNHYQjF8bnFh+iotsajti4eC72kI6W+AXtBe57juerDcuPKKyhhMFpDmUp0zke/gSfzM01Y870kZV76DTpS57RLLwmc2XilwZaZI8XM5BUvIFnprvVw/p1VHlAnoC6616LX8CBocn3am9dBNWG8XXrdVxytnjY4h7OOMY2iJTbXgfeW2IaRkdxYGXPCcxNdDro/wHJj4tVWARaeEBDOdYC7+w2anyXoEZAbHhFHGoAFZ305fJxfiXpex4ZAZttpsxJtT1J5lty92D4j4rUGAWU4/p2m5lKK9x/8Pw79ydxbkaIkQYNj2WRpBN43HFgRbBxQync64T7OgAzffW1u6mrikpHByHuYHaP0RlmcbImKLKO73EvivaG/nDGbtqQsse42O3EqgnnZMYhB1Gn5df7IeVB4GN46gsK6Xfi6auG0/XnJgI1KbRKNaTm5yJa6XJwtfPiRPaUwJXGheOM8jfMlS1QSI7U0HU8C7ZmgxtH3GtvfXgIgayHSrM7tbI6Vk4Q0eBaKBU9eqYID3aeM6AKkcD5zIwl3Tgnow9zbnuX1QLNb8A4LOukqr6HKWJZW3bKto7MvsnNz5sr5YeRYhmkvCGRjzI1lIaX2rpxvrhgAQNDRlIkdtn5eE83pRPGch6qZz1ZPO2K7788+PHzoNzbdI/dTvBoUMr0NKBNbxsTiLXu4o+uqtP0Mgyc/28DO3+alfKDyUZSVSIEY29Cnvnz8OazqKq2Ldf6EJQNncjH1ndogakUmPufsWC9jK7g3mCkpLOcszKgAOrhWJmET5TSbG3uKdai9HsQH3zhBub05RGXNqtQXeR5J/Xl+jq6yV3sO6k+Qypfl0JXUN3Mv58bGtCTZlOWT9FHOTGKKZdxU0IqASd5G++tDp/7DK9beceiu2/XcSa0OZYDxdPokYwxt4fMfeQ2LaUJ4tCEgi68jt5f7WYZQUq+FxQy8KrRgvGSmyFId7wcUBOJu+wHgh+FCKjzJcUgUygAOyxG4l4Zsx3dFF57T/DxuQtigg75z+YnA1a9Qex7mV17f1YKAyqjj1wyhtTPWmm6xC8z/+qiK6eHiVxvFFtnDs00rjzQ59VBDsPBgA73bLkOsf3w1+BlDgYKgb2ANedt85umK7Hvr33e4qrs/FtuJFuDgCEAiNWsPuIWkr0XMcYNDt03vehgpGM8tOIvSI7yXHu1ww8dLDoWpVM6ibLUq3xBV06/WPajm4tutPbHSN5+gUb5iDSaRfiACZRharUOGY60+njybEn4/MHpzqZGhIpqnjxrM4LjkJml6p5sFj4RgSHnpSi361CGSFFLNO5OBz+Y+VuXavi3eUT7xXyyFjteQb/5QwvJJokg2y5LHL6HwbABUyRfWQVR183XaPRTjAdBMuqFUwI5C0STwngxhvBZrKgvHGedvWksA1ZPyftz80yOBJa60KGsAt3/7347teiSM9y+sdKw5y2psDqtAOPeARRkiLoob2YdmmWLCse336QmDCV6B6A9yRUpxnXqmmGkAF3BxX/dllsZfBc5WwxBUj+wE4IQOnCAgguiPcVPb95ZMxZenuAYKtxTmJyOzgt7UBRwLhdtEJ08ZpigBMNUURQaqIAHBd/ZGusOVeBvQPgDBohv9NLCblh6MNvc7hMUF70ve13ROp02BTTCAL1dGZI5FOTF+5Wme+C4utT0yMjI6Pcer0/+JL+02G0Si+0gRZl69GXIisN1GagGTdjFcyUaWSGMygs8O7/7CmntPccmx8uu1ly5DBTp3c4Qvz1gryxmmRbKGTScC0UComZgjEbaO9pbynabHt3Ll31sQzyWaCwf4B5UwaSkpDiCvRLhW+4c0aUqXeNPz8eh7y437csTMmyKhUow6uyqsTW6TbU9NDs8zSPZtaBrolYyR6kxryVXr9rUZu6sQU//1tgIb5lfNhYwYsyKarhRyVKZICvUTljaRhh6xx2pZDCM4eswENjxCbLP0o/34Olnd3sYQCTafL3EgmIxzL44lLkV4f3OEN29cc4InC+F1c4EJvwIalWTAm10rz6ag3Z2WWFZvjDFlZZtcMELYHc2ErNTx1EcgysunEZwrsEsMM7xDfM8XBJXkPlG5NXRRh54hmql2oyIEVvKIssPSVkjJGrmHd6V7Uiw4yXXRqa3GUbeIoG8lpLvDF/rRBdOtldqm5jtSQzSdRcIrKxbcZDngfgHWRQqZt01GtxN2G9Nbls+O4G+NqwaKr2zUzMgEGhxHH4zDQCYNNta7Xm1xaNKzkk96JXxdiCwZZnhRu8NvxDNiUn2Cf9AUeqcgDZnlFQ4z1iEKrR114aY3UYP0MVW4EsOOxnkwns7gV4ky3TFqNhGCX/bGSlJgE7yIMlAGigR+U/sPvDaenu67AEJfvtAuEpL5u3U9b4QI5ypmyUYNuVtAqpDhBQRZBZ23kF0ZDU4XfFMfoXEcqQzJvP7YyPhVrE3DQeeGIZuhi3wOvVTYPvUT7I+N68ncxLVuGn/qlUWRWYnnRwFtSD3QTKEOQiz77qn/tZymlypCBB8N1CV+VhsflD7NJ8YJJSEp/B5G2I6XcdN/H7ID7yobmwiOUoKcXo/1ikBhwFIHfuJKMQ8oCz3z5hP3I4R27ikHlRdgFPkwqjl5mUyvPtC7J5KELr90pWvW04tt/dd5r+apTzGHOEl2PSImJ7UFahpTMHES31Wpvjqo+Yf49hdt2oFE/uZdytoWUxkiNm+8rWq7MH7jBI3BuOLPZgsgBGE/38CStkOMBMqDadVRfLtkrlA/APlEXPSdNI8xQt5vrsDJa3UAEYDdsSfX+YfQN13fKupgSh/6Q93fO2KL5zXMHDXpMwY40QQ15itdGwXtLzaFgNdTDEeMWEpuXnFpk76lK+FIDTdDDkVG0wz7B/wYyZO0qeGuK8hh+8p0W9rdCEDCZURTOyH6XB63Z3x9qkxTWhntLRyqzG3GjGPat80s5w9TCUZk5/+42j3ug7fkb/6JnUpqOav74xdE/wRRH1brzRRzbcGpllLf+TK99JGwfA5/J2i/LzgNvsGSNpodnUNCKzhI1TyG/xr8HU8De2KEcLEgmTqtXMMqL5I0qmadGNvCO+SLAfR/YnaBrK07J1STG01WLhlPtNUdTiA0gBQFXUrd6MrLFW+46sLyoB0dJV0CI6dLH0jZrtw20p0KGwSHTfu2L0aF9LeTYh1jOPw8OmEqCLlmB4eoec4+mppHOrvn2ZEHeUiMZ3UxQoQw0nJ18yts2fiiJqKUlJQrjgmF7B2BDzyNZNTxcqYB3ZT3OvtDp8miadM/IL+8iHvSnkK1TM4dJb9VteQ0Ie6RiBO2CQ1291lHoL1ELtszpW2kWfo0Hjxbdws8djJ4FfVI25tU0dtsQumFGAfoVTkr21p/Sta0xRSBW98wyR1UELqMeUOjwErSdrjIyz8RhBQaBdvhEjd8A0vbUL78zPqfez7f3jy5bNCdaym8SkylWYltoWjJep2zszoF7OuAybip2Pu/aJb/Q6bGS/z7MCoD6voR/sjNzN7z37N3rGSycfeL3DZ8Ns0ANOXioSVnx2/HIvmTmJm96DEkNk9iBM/uqCEbwLEBpHWGrrmQqZhAMR7QwI7ceL6JFloOk6YOtIHA8m7cnV3mfFtYSVFWs3afpu6BwFj3A6DHsDnzqmRgCeVNfzVD7UzD5Yuxnuvnar2fZ1Z3wdMj9nIju1oPncj1x5WQnOgqukBFAiWdLc9X2ixuoBmjvPu3gUThFKEriUeoVadC61aeVH2IAN3mSSPS1gT2yPnWrjJ8ezDL5rTqctgfGWO2tBg30bR076MEXcwGqYKWhanQahBCSJGCQwC544FAHBsbAbTYFPlWkp9uyqCJ6cHTIlH9IU5k1l6/A8m41yHu6Qh2jyk/gcboL/GBksHXkgCCosPvuuyE2qFFPqMf/t8DTSlPiQa6hJRgBh/fOfZeMfvxI3nh+YDbMZzdkOEd5zYgCqbxC58OG595ngpk3JUqVYIpgwp/TJ60TOShJoQK+00ABKnBjvbOwRynESrl8JbtpBObC1Jr0sNlmSuShRnmolRxU3BfXZWxJnAkoK2Sp4qigkkz3KRQV46zcKQh9k/ULTL+lwGCLP2+KtZ5In6ktPbA27LUwk6AOjdAMFkCz2jdDQfdg3s56ifQL9KaYjBAhoXboBRxp3maJ7OYOlgh3bGtBwFE/UXk//SMfb4yxrLr57ZRsxTRQfwlLJpWV8ufxDBiEGEUY0vmGRNF4avii9WrhQGTDmCaUsMCSyVbRjQaZ6kJy2CeaukLYHxMHxU5EYuh50uG4IcQKE/t91PuzEOCb+hr4Ie5dRQU1p+8RWWlQo2G6EX5mspnhPcf4kq7EkWF9XiRbBZjVgMmdvdMhUI+Lvw4AzndwzJWkYghhAlJg3qTLk5BZFe3b/zSitLf/k6w/LFQHz9bKZyH3IJ+XJ5vP/uDFnhh9jLoT0wowlBmeA/Dh4wZ7EkkDUXPngchD1AbMFWSPH2agoKNaZSNd+yTUqnTVHL7PgMR0i5OBzduLG7NCAohFYrx1q7oxZX6vytSu4N/641L1J50pL52bm+9zQ9oD821jsWbUN+X8hnphuu3v459g5d2AjW1sFSfReboQ+XYUJIM3sHXaqkW9z12qWOUcaVAR4x2yPmQnHOi756h0CwAVkZiDXxV1Q==

显而易见与解密的内容不一致,但是对象又输出不了到文档里,所以我们只需要在加密方法中将接受到的字符串先转换成对象形式再进行加密即可:

微信小程序逆向保姆级教程

微信小程序逆向保姆级教程

与上面的密文一致,现在就是一个完美的加解密文档了。

PS:Ot("aesKey")在本文中不作详细介绍。

原文始发于微信公众号(听风安全):微信小程序逆向保姆级教程

免责声明:文章中涉及的程序(方法)可能带有攻击性,仅供安全研究与教学之用,读者将其信息做其他用途,由读者承担全部法律及连带责任,本站不承担任何法律及连带责任;如有问题可邮件联系(建议使用企业邮箱或有效邮箱,避免邮件被拦截,联系方式见首页),望知悉。
  • 左青龙
  • 微信扫一扫
  • weinxin
  • 右白虎
  • 微信扫一扫
  • weinxin
admin
  • 本文由 发表于 2024年12月17日20:21:51
  • 转载请保留本文链接(CN-SEC中文网:感谢原作者辛苦付出):
                   微信小程序逆向保姆级教程https://cn-sec.com/archives/3499809.html
                  免责声明:文章中涉及的程序(方法)可能带有攻击性,仅供安全研究与教学之用,读者将其信息做其他用途,由读者承担全部法律及连带责任,本站不承担任何法律及连带责任;如有问题可邮件联系(建议使用企业邮箱或有效邮箱,避免邮件被拦截,联系方式见首页),望知悉.

发表评论

匿名网友 填写信息