来自:CSDN,作者:LiangJGo
链接:https://blog.csdn.net/LiangJGo/article/details/90080011
入网络协议,以图文并茂的方式细说网络技术细节。
很久很久以前,那时候还没有现在的外星人超级电脑,或者华为的P30。比较调皮的小明想要把自己机器上写好的一些个人游戏心得(如何玩好王者农药)发给小红(校花),希望博得芳心。小明个人比较勤,游戏总结心得总结的比较详细(大概有100M)。但是到底怎么才能从自己的机器上传给小红的机器呢,进过一番打听,他发现远在太平洋另一端的科学家已经发明了一种技术 物理层,专门用来解决小明这种单身狗问题。该层主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换)。这一层的数据叫做比特。
他很兴奋,通过一个月的努力终于搭建起了这个物理层。
然而上天却好像和小明开了一个玩笑,楼下的小润发超市的网线、光纤最近卖光了,但是这个物理层传输数据只能通过网线传输。到底怎么办。
此时,他体内的雄性激素促使着他的大脑以光速运转。终于他饿了,无奈得走去学校饭堂三楼吃麻辣烫。此时听到隔壁坐着的那位王叔叔(老王)说,科学家已经发明了一种技术可以通过无线电来传输。What?这不是完美解决了自己的困扰吗。小明连忙对隔壁老王说谢谢,老王留下了幸福的泪水!
右通过一番努力查资料,小明发现:这种技术可以通过电线我能发数据流,也可以通过其它介质来传输。然后还要保证了传输过去的比特流是正确的,有纠错功能。定义了如何让格式化数据以进行传输,以及如何让控制对物理介质的访问。这一层通常还提供错误检测和纠正,以确保数据的可靠传输。
小明把层技术称为:数据链路层
由于小明家离小红家比较远,无线电信号无法传输到哪里,但是这完全难不到小明。他通过在离小红家的路上搭建了多个节点(路由器,交换机),用于信号的传输。但是由于他有时候被雄性激素冲昏了头脑,搭建的信号节点有点乱,而且很多。那他又想用最短的路径来传输怎么办呢?在小明沮丧走回家的时候已深夜,他看见今天看到的那位王叔叔匆匆的从自己家走出来,他连忙拉住王叔叔,向他诉说自己的烦恼,希望王叔叔能给自己一些帮助。当小明说完后,王叔叔从紧张变为和蔼,和小明说:其实已经有人发明了网络层。即路由器,交换机那些具有寻址功能的设备所实现的功能。这一层定义的是IP地址,通过IP地址寻址。所以产生了IP协议。该层能选择最佳路径,这就是路由要做的事。
为了趁热打铁,小明通宵查资料来学习相关信息,并且简单搭建好网络层,开始传输数据,趁着传输过程好好睡一觉。当他起来的时候,噩梦才刚刚开始,因为他传输的数据太大(100M)只传输了一部分,而且断断续续的,有一部分数据根本传不出去。那怎么办?
“加一层传输层!”:王叔叔在楼下大声喊着,“资料在你妈妈的床头柜”,王叔叔继续说。小明连忙找到资料,上面写着:“
发正确的发比特流数据到另一台计算机了,但是当我发大量数据时候,可能需要好长时间,例如一个视频格式的,网络会中断好多次(事实上,即使有了物理层和数据链路层,网络还是经常中断,只是中断的时间是毫秒级别的)。
那么,我还须要保证传输大量文件时的准确性。于是,我要对发出去的数据进行封装。就像发快递一样,一个个地发。
例如TCP,是用于发大量数据的,我发了1万个包出去,另一台电脑就要告诉我是否接受到了1万个包,如果缺了3个包,就告诉我是第1001,234,8888个包丢了,那我再发一次。这样,就能保证对方把这个视频完整接收了。
例如UDP,是用于发送少量数据的。我发20个包出去,一般不会丢包,所以,我不管你收到多少个。在多人互动游戏,也经常用UDP协议,因为一般都是简单的信息,而且有广播的需求。如果用TCP,效率就很低,因为它会不停地告诉主机我收到了20个包,或者我收到了18个包,再发我两个!如果同时有1万台计算机都这样做,那么用TCP反而会降低效率,还不如用UDP,主机发出去就算了,丢几个包你就卡一下,算了,下次再发包你再更新。
TCP协议是会绑定IP和端口的协议,下面会介绍IP协议。”
通过如此这般的操作,他!小明同学终于把自己100M的游戏心得发送给了小红。
然而,小红根本不玩游戏。得知这个消息后,小明楞逼了。但是他没有放弃,而是把自己猜到小红喜欢的信息都发给他,但是小明每发一次,难道我每次都要调用TCP去打包,然后调用IP协议去找路由,这一来一回就是一天,那怎么办呢?
他又翻了翻王叔叔的笔记本资料,写着:会话层可以帮助我们建立和管理应用程序之间的通信,封装了调用TCP去打包,然后调用IP协议去找路由等操作,如此一来,他只需要十几二十分钟就能够成功搭建好传输数据的机器。
有一次,小明传了一份数据,是关于如何选购化妆品的文章,小红对此非常感兴趣,但是当小红想用自己的window开该文件时发现根本无法打开,后来小红在下课的时候和小明说自己无法打开这个文件,小明想自己用Linux系统明明完整地发送给了小红啊,那就奇怪了,但是出于耍帅,小明只是轻轻地说“我放学后再发你一份!”。
这时虽然小明不知道是出了什么问题,但是他坚信老王叔叔的资料笔记会有答案的。
果然!上清清楚楚的写着:“现在我能保证应用程序自动收发包和寻址了。但是我要用Linux给window发包,两个系统语法不一致,就像安装包一样,exe是不能在linux下用的,shell在window下也是不能直接运行的。于是需要表示层(presentation),帮我们解决不同系统之间的通信语法问题。”
小明立即用了一个通宵手动搭好了表示层,传输了一份完美的文件给小红。
-
七层有底向上分别是:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。 -
简化后的四层分别是:主机到网络层(比特)、网络层(数据帧)、传输层(数据包)、应用层(数据段)。
-
无连接,传输数据时不需要建立连接,减小开销 -
尽最大努力交付,不确保可靠交付 -
面向报文 -
没有拥塞控制、确保信息实时性 -
支持一对一,一对多,多对一,多对多 -
首部开销小,只有8个字节
-
源端口,发送方的端口 -
目标端口,接收方的端口 -
长度,首部长度 + 用户数据包的长度(可以没有数据包,所用最小值为8) -
检验和,检查UDP用户数据传输中是否与错,有错就丢弃(检查首部长度 + 用户数据包)
-
面向连接的协议。数据传输之前都要建立连接(三次挥手),数据传输结束都要释放连接(四次挥手)
-
一条TCP连接只能有两个端点,端点是socket(结构 IP地址:端口号),并非主机或进程。
-
可靠交付
-
全双工通信(一端既可以做发送方也可以做接收方)
-
面向字节流
-
特点:资源利用率非常低 -
工作原理:客户发送一次数据到服务端,必须等到服务端响应后才发第二次数据,中间的等待时间RTT占了大部分时间,中间如果出现差错(超时或确认丢失)都需要从新传输。
-
连续ARQ协议工作原理:维持一个发送窗口(记录了当前可以发送的数据包数量n),在窗口内的数据都可以连续发送出去,服务器只在接收完一个发送窗口的数据后才回响应(累计确认),发送端接收到响应就把发送窗口移动n位,开始新一轮数据发送。
-
发送窗口有两部分组成,已发送的报文段 和 能够发送但未发送的报文段(等待已发送报文段全部接收完发回来的确认就可以发送了) -
当收到确认后发送窗口会向右移动到7位置,作为窗口的起始位置。 -
发送窗口,发送窗口有可能会收缩(因为接收窗口有可能因为接收缓存不够而变小)
-
支持客户端 / 服务器模式 -
简单快速 -
灵活 -
无连接,在完成一次请求获得响应后就会断开 -
无状态,没有记忆的,请求完一次后,就结束了,后面如果要再获得数据必须从新请求
请求报文的结构
请求头部:用于设置请求的的一些参数如:ContentType
请求空行:就算请求数据为空,都要有空行,表示请求首部的结束
从浏览器地址栏键入URL,回车后会尽力的流程:
-
DNS解析
-
TCP连接
-
发送HTTP请求
-
服务器处理请求,并返回HTTP报文
-
浏览器解析渲染页面
-
连接结束
-
GET请求与POST请求的区别
HTTP报文层面:GET请求信息放在URL中,POST放在报文体中
数据库层面:GET符合幂等性和安全性,POST不符合
其他层面:GET可以被缓存、储存,而POST不行
为什么会有这两种技术?
-
在使用一些需要登录的网站时,每次访问,都会需要验证个人信息,即登录。这样做比较繁琐,能否将个人的账号和密码存起来,访问的时候直接用存取来的个人信息进行验证呢?解决这个问题的就是Cookie和Session
-
Cookie:通过客户端(浏览器)来缓存个人信息。当用户第一次登录时,服务器会将个人信息放在了响应中, 浏览器接收到响应时候会将个人信息以Cookie的形式访问浏览器中保存起来,在下一次访问服务器的时候会带上该Cookie,Cookie中有个人信息,服务器能解析出来,所以不同再次登录验证了。(不够安全,对服务器的开销小)
-
Session通过服务端来缓存信息,根据请求中是否包含Session id的字段,如果不存在则创建一个,并返回给浏览器缓存起来。如果存在则通过该Session id在服务器存储中获得对应的Session信息,直接验证。(安全,服务器的开销变大)
热文推荐
原文始发于微信公众号(LemonSec):16张图详解计算机网络协议(万字)
- 左青龙
- 微信扫一扫
-
- 右白虎
- 微信扫一扫
-
评论